include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4}*288
Also Known As : {4,4}(6,0), {4,4|6}. if this polytope has another name.
Group : SmallGroup(288,889)
Rank : 3
Schlafli Type : {4,4}
Number of vertices, edges, etc : 36, 72, 36
Order of s0s1s2 : 12
Order of s0s1s2s1 : 6
Special Properties :
Toroidal
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Halving Operation
Skewing Operation
Facet Of :
{4,4,2} of size 576
{4,4,4} of size 1152
{4,4,6} of size 1728
Vertex Figure Of :
{2,4,4} of size 576
{4,4,4} of size 1152
{6,4,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,4}*144
4-fold quotients : {4,4}*72
9-fold quotients : {4,4}*32
18-fold quotients : {2,4}*16, {4,2}*16
36-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,4}*576, {4,8}*576a, {8,4}*576a, {4,8}*576b, {8,4}*576b
3-fold covers : {4,12}*864a, {12,4}*864a, {4,12}*864d, {12,4}*864c
4-fold covers : {4,8}*1152a, {8,4}*1152a, {8,8}*1152a, {8,8}*1152b, {8,8}*1152c, {8,8}*1152d, {4,16}*1152a, {16,4}*1152a, {4,16}*1152b, {16,4}*1152b, {4,8}*1152b, {8,4}*1152b, {4,4}*1152
5-fold covers : {4,20}*1440, {20,4}*1440
6-fold covers : {4,12}*1728b, {12,4}*1728a, {4,24}*1728b, {8,12}*1728b, {12,8}*1728b, {24,4}*1728b, {4,24}*1728d, {8,12}*1728c, {12,8}*1728c, {24,4}*1728d, {4,24}*1728f, {24,4}*1728e, {8,12}*1728e, {12,8}*1728e, {4,24}*1728h, {24,4}*1728h, {8,12}*1728f, {12,8}*1728f, {4,12}*1728d, {12,4}*1728d
Permutation Representation (GAP) :
s0 := ( 8, 9)(11,12);;
s1 := ( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12);;
s2 := ( 1, 2)( 4, 5)( 7,10)( 8,11)( 9,12);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(12)!( 8, 9)(11,12);
s1 := Sym(12)!( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12);
s2 := Sym(12)!( 1, 2)( 4, 5)( 7,10)( 8,11)( 9,12);
poly := sub<Sym(12)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >;
References : None.
to this polytope