Polytope of Type {4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4}*288
Also Known As : {4,4}(6,0), {4,4|6}. if this polytope has another name.
Group : SmallGroup(288,889)
Rank : 3
Schlafli Type : {4,4}
Number of vertices, edges, etc : 36, 72, 36
Order of s0s1s2 : 12
Order of s0s1s2s1 : 6
Special Properties :
   Toroidal
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Halving Operation
   Skewing Operation
Facet Of :
   {4,4,2} of size 576
   {4,4,4} of size 1152
   {4,4,6} of size 1728
Vertex Figure Of :
   {2,4,4} of size 576
   {4,4,4} of size 1152
   {6,4,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,4}*144
   4-fold quotients : {4,4}*72
   9-fold quotients : {4,4}*32
   18-fold quotients : {2,4}*16, {4,2}*16
   36-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,4}*576, {4,8}*576a, {8,4}*576a, {4,8}*576b, {8,4}*576b
   3-fold covers : {4,12}*864a, {12,4}*864a, {4,12}*864d, {12,4}*864c
   4-fold covers : {4,8}*1152a, {8,4}*1152a, {8,8}*1152a, {8,8}*1152b, {8,8}*1152c, {8,8}*1152d, {4,16}*1152a, {16,4}*1152a, {4,16}*1152b, {16,4}*1152b, {4,8}*1152b, {8,4}*1152b, {4,4}*1152
   5-fold covers : {4,20}*1440, {20,4}*1440
   6-fold covers : {4,12}*1728b, {12,4}*1728a, {4,24}*1728b, {8,12}*1728b, {12,8}*1728b, {24,4}*1728b, {4,24}*1728d, {8,12}*1728c, {12,8}*1728c, {24,4}*1728d, {4,24}*1728f, {24,4}*1728e, {8,12}*1728e, {12,8}*1728e, {4,24}*1728h, {24,4}*1728h, {8,12}*1728f, {12,8}*1728f, {4,12}*1728d, {12,4}*1728d
Permutation Representation (GAP) :
s0 := ( 8, 9)(11,12);;
s1 := ( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12);;
s2 := ( 1, 2)( 4, 5)( 7,10)( 8,11)( 9,12);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(12)!( 8, 9)(11,12);
s1 := Sym(12)!( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12);
s2 := Sym(12)!( 1, 2)( 4, 5)( 7,10)( 8,11)( 9,12);
poly := sub<Sym(12)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >; 
 
References : None.
to this polytope