include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,12,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,8}*1152b
Also Known As : {{6,12|2},{12,8|2}}. if this polytope has another name.
Group : SmallGroup(1152,97531)
Rank : 4
Schlafli Type : {6,12,8}
Number of vertices, edges, etc : 6, 36, 48, 8
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,12,4}*576a, {6,6,8}*576a
3-fold quotients : {2,12,8}*384a, {6,4,8}*384a
4-fold quotients : {6,12,2}*288a, {6,6,4}*288a
6-fold quotients : {2,12,4}*192a, {6,4,4}*192, {2,6,8}*192, {6,2,8}*192
8-fold quotients : {6,6,2}*144a
9-fold quotients : {2,4,8}*128a
12-fold quotients : {3,2,8}*96, {2,12,2}*96, {2,6,4}*96a, {6,2,4}*96, {6,4,2}*96a
18-fold quotients : {2,4,4}*64, {2,2,8}*64
24-fold quotients : {3,2,4}*48, {2,6,2}*48, {6,2,2}*48
36-fold quotients : {2,2,4}*32, {2,4,2}*32
48-fold quotients : {2,3,2}*24, {3,2,2}*24
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 73)( 2, 78)( 3, 80)( 4, 76)( 5, 81)( 6, 74)( 7, 79)( 8, 75)
( 9, 77)( 10, 82)( 11, 87)( 12, 89)( 13, 85)( 14, 90)( 15, 83)( 16, 88)
( 17, 84)( 18, 86)( 19, 91)( 20, 96)( 21, 98)( 22, 94)( 23, 99)( 24, 92)
( 25, 97)( 26, 93)( 27, 95)( 28,100)( 29,105)( 30,107)( 31,103)( 32,108)
( 33,101)( 34,106)( 35,102)( 36,104)( 37,109)( 38,114)( 39,116)( 40,112)
( 41,117)( 42,110)( 43,115)( 44,111)( 45,113)( 46,118)( 47,123)( 48,125)
( 49,121)( 50,126)( 51,119)( 52,124)( 53,120)( 54,122)( 55,127)( 56,132)
( 57,134)( 58,130)( 59,135)( 60,128)( 61,133)( 62,129)( 63,131)( 64,136)
( 65,141)( 66,143)( 67,139)( 68,144)( 69,137)( 70,142)( 71,138)( 72,140)
(145,217)(146,222)(147,224)(148,220)(149,225)(150,218)(151,223)(152,219)
(153,221)(154,226)(155,231)(156,233)(157,229)(158,234)(159,227)(160,232)
(161,228)(162,230)(163,235)(164,240)(165,242)(166,238)(167,243)(168,236)
(169,241)(170,237)(171,239)(172,244)(173,249)(174,251)(175,247)(176,252)
(177,245)(178,250)(179,246)(180,248)(181,253)(182,258)(183,260)(184,256)
(185,261)(186,254)(187,259)(188,255)(189,257)(190,262)(191,267)(192,269)
(193,265)(194,270)(195,263)(196,268)(197,264)(198,266)(199,271)(200,276)
(201,278)(202,274)(203,279)(204,272)(205,277)(206,273)(207,275)(208,280)
(209,285)(210,287)(211,283)(212,288)(213,281)(214,286)(215,282)(216,284)
(289,361)(290,366)(291,368)(292,364)(293,369)(294,362)(295,367)(296,363)
(297,365)(298,370)(299,375)(300,377)(301,373)(302,378)(303,371)(304,376)
(305,372)(306,374)(307,379)(308,384)(309,386)(310,382)(311,387)(312,380)
(313,385)(314,381)(315,383)(316,388)(317,393)(318,395)(319,391)(320,396)
(321,389)(322,394)(323,390)(324,392)(325,397)(326,402)(327,404)(328,400)
(329,405)(330,398)(331,403)(332,399)(333,401)(334,406)(335,411)(336,413)
(337,409)(338,414)(339,407)(340,412)(341,408)(342,410)(343,415)(344,420)
(345,422)(346,418)(347,423)(348,416)(349,421)(350,417)(351,419)(352,424)
(353,429)(354,431)(355,427)(356,432)(357,425)(358,430)(359,426)(360,428)
(433,505)(434,510)(435,512)(436,508)(437,513)(438,506)(439,511)(440,507)
(441,509)(442,514)(443,519)(444,521)(445,517)(446,522)(447,515)(448,520)
(449,516)(450,518)(451,523)(452,528)(453,530)(454,526)(455,531)(456,524)
(457,529)(458,525)(459,527)(460,532)(461,537)(462,539)(463,535)(464,540)
(465,533)(466,538)(467,534)(468,536)(469,541)(470,546)(471,548)(472,544)
(473,549)(474,542)(475,547)(476,543)(477,545)(478,550)(479,555)(480,557)
(481,553)(482,558)(483,551)(484,556)(485,552)(486,554)(487,559)(488,564)
(489,566)(490,562)(491,567)(492,560)(493,565)(494,561)(495,563)(496,568)
(497,573)(498,575)(499,571)(500,576)(501,569)(502,574)(503,570)(504,572);;
s1 := ( 1,146)( 2,145)( 3,147)( 4,152)( 5,151)( 6,153)( 7,149)( 8,148)
( 9,150)( 10,155)( 11,154)( 12,156)( 13,161)( 14,160)( 15,162)( 16,158)
( 17,157)( 18,159)( 19,164)( 20,163)( 21,165)( 22,170)( 23,169)( 24,171)
( 25,167)( 26,166)( 27,168)( 28,173)( 29,172)( 30,174)( 31,179)( 32,178)
( 33,180)( 34,176)( 35,175)( 36,177)( 37,182)( 38,181)( 39,183)( 40,188)
( 41,187)( 42,189)( 43,185)( 44,184)( 45,186)( 46,191)( 47,190)( 48,192)
( 49,197)( 50,196)( 51,198)( 52,194)( 53,193)( 54,195)( 55,200)( 56,199)
( 57,201)( 58,206)( 59,205)( 60,207)( 61,203)( 62,202)( 63,204)( 64,209)
( 65,208)( 66,210)( 67,215)( 68,214)( 69,216)( 70,212)( 71,211)( 72,213)
( 73,218)( 74,217)( 75,219)( 76,224)( 77,223)( 78,225)( 79,221)( 80,220)
( 81,222)( 82,227)( 83,226)( 84,228)( 85,233)( 86,232)( 87,234)( 88,230)
( 89,229)( 90,231)( 91,236)( 92,235)( 93,237)( 94,242)( 95,241)( 96,243)
( 97,239)( 98,238)( 99,240)(100,245)(101,244)(102,246)(103,251)(104,250)
(105,252)(106,248)(107,247)(108,249)(109,254)(110,253)(111,255)(112,260)
(113,259)(114,261)(115,257)(116,256)(117,258)(118,263)(119,262)(120,264)
(121,269)(122,268)(123,270)(124,266)(125,265)(126,267)(127,272)(128,271)
(129,273)(130,278)(131,277)(132,279)(133,275)(134,274)(135,276)(136,281)
(137,280)(138,282)(139,287)(140,286)(141,288)(142,284)(143,283)(144,285)
(289,434)(290,433)(291,435)(292,440)(293,439)(294,441)(295,437)(296,436)
(297,438)(298,443)(299,442)(300,444)(301,449)(302,448)(303,450)(304,446)
(305,445)(306,447)(307,452)(308,451)(309,453)(310,458)(311,457)(312,459)
(313,455)(314,454)(315,456)(316,461)(317,460)(318,462)(319,467)(320,466)
(321,468)(322,464)(323,463)(324,465)(325,470)(326,469)(327,471)(328,476)
(329,475)(330,477)(331,473)(332,472)(333,474)(334,479)(335,478)(336,480)
(337,485)(338,484)(339,486)(340,482)(341,481)(342,483)(343,488)(344,487)
(345,489)(346,494)(347,493)(348,495)(349,491)(350,490)(351,492)(352,497)
(353,496)(354,498)(355,503)(356,502)(357,504)(358,500)(359,499)(360,501)
(361,506)(362,505)(363,507)(364,512)(365,511)(366,513)(367,509)(368,508)
(369,510)(370,515)(371,514)(372,516)(373,521)(374,520)(375,522)(376,518)
(377,517)(378,519)(379,524)(380,523)(381,525)(382,530)(383,529)(384,531)
(385,527)(386,526)(387,528)(388,533)(389,532)(390,534)(391,539)(392,538)
(393,540)(394,536)(395,535)(396,537)(397,542)(398,541)(399,543)(400,548)
(401,547)(402,549)(403,545)(404,544)(405,546)(406,551)(407,550)(408,552)
(409,557)(410,556)(411,558)(412,554)(413,553)(414,555)(415,560)(416,559)
(417,561)(418,566)(419,565)(420,567)(421,563)(422,562)(423,564)(424,569)
(425,568)(426,570)(427,575)(428,574)(429,576)(430,572)(431,571)(432,573);;
s2 := ( 1, 73)( 2, 80)( 3, 78)( 4, 79)( 5, 77)( 6, 75)( 7, 76)( 8, 74)
( 9, 81)( 10, 82)( 11, 89)( 12, 87)( 13, 88)( 14, 86)( 15, 84)( 16, 85)
( 17, 83)( 18, 90)( 19, 91)( 20, 98)( 21, 96)( 22, 97)( 23, 95)( 24, 93)
( 25, 94)( 26, 92)( 27, 99)( 28,100)( 29,107)( 30,105)( 31,106)( 32,104)
( 33,102)( 34,103)( 35,101)( 36,108)( 37,118)( 38,125)( 39,123)( 40,124)
( 41,122)( 42,120)( 43,121)( 44,119)( 45,126)( 46,109)( 47,116)( 48,114)
( 49,115)( 50,113)( 51,111)( 52,112)( 53,110)( 54,117)( 55,136)( 56,143)
( 57,141)( 58,142)( 59,140)( 60,138)( 61,139)( 62,137)( 63,144)( 64,127)
( 65,134)( 66,132)( 67,133)( 68,131)( 69,129)( 70,130)( 71,128)( 72,135)
(145,235)(146,242)(147,240)(148,241)(149,239)(150,237)(151,238)(152,236)
(153,243)(154,244)(155,251)(156,249)(157,250)(158,248)(159,246)(160,247)
(161,245)(162,252)(163,217)(164,224)(165,222)(166,223)(167,221)(168,219)
(169,220)(170,218)(171,225)(172,226)(173,233)(174,231)(175,232)(176,230)
(177,228)(178,229)(179,227)(180,234)(181,280)(182,287)(183,285)(184,286)
(185,284)(186,282)(187,283)(188,281)(189,288)(190,271)(191,278)(192,276)
(193,277)(194,275)(195,273)(196,274)(197,272)(198,279)(199,262)(200,269)
(201,267)(202,268)(203,266)(204,264)(205,265)(206,263)(207,270)(208,253)
(209,260)(210,258)(211,259)(212,257)(213,255)(214,256)(215,254)(216,261)
(289,397)(290,404)(291,402)(292,403)(293,401)(294,399)(295,400)(296,398)
(297,405)(298,406)(299,413)(300,411)(301,412)(302,410)(303,408)(304,409)
(305,407)(306,414)(307,415)(308,422)(309,420)(310,421)(311,419)(312,417)
(313,418)(314,416)(315,423)(316,424)(317,431)(318,429)(319,430)(320,428)
(321,426)(322,427)(323,425)(324,432)(325,361)(326,368)(327,366)(328,367)
(329,365)(330,363)(331,364)(332,362)(333,369)(334,370)(335,377)(336,375)
(337,376)(338,374)(339,372)(340,373)(341,371)(342,378)(343,379)(344,386)
(345,384)(346,385)(347,383)(348,381)(349,382)(350,380)(351,387)(352,388)
(353,395)(354,393)(355,394)(356,392)(357,390)(358,391)(359,389)(360,396)
(433,559)(434,566)(435,564)(436,565)(437,563)(438,561)(439,562)(440,560)
(441,567)(442,568)(443,575)(444,573)(445,574)(446,572)(447,570)(448,571)
(449,569)(450,576)(451,541)(452,548)(453,546)(454,547)(455,545)(456,543)
(457,544)(458,542)(459,549)(460,550)(461,557)(462,555)(463,556)(464,554)
(465,552)(466,553)(467,551)(468,558)(469,523)(470,530)(471,528)(472,529)
(473,527)(474,525)(475,526)(476,524)(477,531)(478,532)(479,539)(480,537)
(481,538)(482,536)(483,534)(484,535)(485,533)(486,540)(487,505)(488,512)
(489,510)(490,511)(491,509)(492,507)(493,508)(494,506)(495,513)(496,514)
(497,521)(498,519)(499,520)(500,518)(501,516)(502,517)(503,515)(504,522);;
s3 := ( 1,289)( 2,290)( 3,291)( 4,292)( 5,293)( 6,294)( 7,295)( 8,296)
( 9,297)( 10,298)( 11,299)( 12,300)( 13,301)( 14,302)( 15,303)( 16,304)
( 17,305)( 18,306)( 19,307)( 20,308)( 21,309)( 22,310)( 23,311)( 24,312)
( 25,313)( 26,314)( 27,315)( 28,316)( 29,317)( 30,318)( 31,319)( 32,320)
( 33,321)( 34,322)( 35,323)( 36,324)( 37,334)( 38,335)( 39,336)( 40,337)
( 41,338)( 42,339)( 43,340)( 44,341)( 45,342)( 46,325)( 47,326)( 48,327)
( 49,328)( 50,329)( 51,330)( 52,331)( 53,332)( 54,333)( 55,352)( 56,353)
( 57,354)( 58,355)( 59,356)( 60,357)( 61,358)( 62,359)( 63,360)( 64,343)
( 65,344)( 66,345)( 67,346)( 68,347)( 69,348)( 70,349)( 71,350)( 72,351)
( 73,361)( 74,362)( 75,363)( 76,364)( 77,365)( 78,366)( 79,367)( 80,368)
( 81,369)( 82,370)( 83,371)( 84,372)( 85,373)( 86,374)( 87,375)( 88,376)
( 89,377)( 90,378)( 91,379)( 92,380)( 93,381)( 94,382)( 95,383)( 96,384)
( 97,385)( 98,386)( 99,387)(100,388)(101,389)(102,390)(103,391)(104,392)
(105,393)(106,394)(107,395)(108,396)(109,406)(110,407)(111,408)(112,409)
(113,410)(114,411)(115,412)(116,413)(117,414)(118,397)(119,398)(120,399)
(121,400)(122,401)(123,402)(124,403)(125,404)(126,405)(127,424)(128,425)
(129,426)(130,427)(131,428)(132,429)(133,430)(134,431)(135,432)(136,415)
(137,416)(138,417)(139,418)(140,419)(141,420)(142,421)(143,422)(144,423)
(145,433)(146,434)(147,435)(148,436)(149,437)(150,438)(151,439)(152,440)
(153,441)(154,442)(155,443)(156,444)(157,445)(158,446)(159,447)(160,448)
(161,449)(162,450)(163,451)(164,452)(165,453)(166,454)(167,455)(168,456)
(169,457)(170,458)(171,459)(172,460)(173,461)(174,462)(175,463)(176,464)
(177,465)(178,466)(179,467)(180,468)(181,478)(182,479)(183,480)(184,481)
(185,482)(186,483)(187,484)(188,485)(189,486)(190,469)(191,470)(192,471)
(193,472)(194,473)(195,474)(196,475)(197,476)(198,477)(199,496)(200,497)
(201,498)(202,499)(203,500)(204,501)(205,502)(206,503)(207,504)(208,487)
(209,488)(210,489)(211,490)(212,491)(213,492)(214,493)(215,494)(216,495)
(217,505)(218,506)(219,507)(220,508)(221,509)(222,510)(223,511)(224,512)
(225,513)(226,514)(227,515)(228,516)(229,517)(230,518)(231,519)(232,520)
(233,521)(234,522)(235,523)(236,524)(237,525)(238,526)(239,527)(240,528)
(241,529)(242,530)(243,531)(244,532)(245,533)(246,534)(247,535)(248,536)
(249,537)(250,538)(251,539)(252,540)(253,550)(254,551)(255,552)(256,553)
(257,554)(258,555)(259,556)(260,557)(261,558)(262,541)(263,542)(264,543)
(265,544)(266,545)(267,546)(268,547)(269,548)(270,549)(271,568)(272,569)
(273,570)(274,571)(275,572)(276,573)(277,574)(278,575)(279,576)(280,559)
(281,560)(282,561)(283,562)(284,563)(285,564)(286,565)(287,566)(288,567);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(576)!( 1, 73)( 2, 78)( 3, 80)( 4, 76)( 5, 81)( 6, 74)( 7, 79)
( 8, 75)( 9, 77)( 10, 82)( 11, 87)( 12, 89)( 13, 85)( 14, 90)( 15, 83)
( 16, 88)( 17, 84)( 18, 86)( 19, 91)( 20, 96)( 21, 98)( 22, 94)( 23, 99)
( 24, 92)( 25, 97)( 26, 93)( 27, 95)( 28,100)( 29,105)( 30,107)( 31,103)
( 32,108)( 33,101)( 34,106)( 35,102)( 36,104)( 37,109)( 38,114)( 39,116)
( 40,112)( 41,117)( 42,110)( 43,115)( 44,111)( 45,113)( 46,118)( 47,123)
( 48,125)( 49,121)( 50,126)( 51,119)( 52,124)( 53,120)( 54,122)( 55,127)
( 56,132)( 57,134)( 58,130)( 59,135)( 60,128)( 61,133)( 62,129)( 63,131)
( 64,136)( 65,141)( 66,143)( 67,139)( 68,144)( 69,137)( 70,142)( 71,138)
( 72,140)(145,217)(146,222)(147,224)(148,220)(149,225)(150,218)(151,223)
(152,219)(153,221)(154,226)(155,231)(156,233)(157,229)(158,234)(159,227)
(160,232)(161,228)(162,230)(163,235)(164,240)(165,242)(166,238)(167,243)
(168,236)(169,241)(170,237)(171,239)(172,244)(173,249)(174,251)(175,247)
(176,252)(177,245)(178,250)(179,246)(180,248)(181,253)(182,258)(183,260)
(184,256)(185,261)(186,254)(187,259)(188,255)(189,257)(190,262)(191,267)
(192,269)(193,265)(194,270)(195,263)(196,268)(197,264)(198,266)(199,271)
(200,276)(201,278)(202,274)(203,279)(204,272)(205,277)(206,273)(207,275)
(208,280)(209,285)(210,287)(211,283)(212,288)(213,281)(214,286)(215,282)
(216,284)(289,361)(290,366)(291,368)(292,364)(293,369)(294,362)(295,367)
(296,363)(297,365)(298,370)(299,375)(300,377)(301,373)(302,378)(303,371)
(304,376)(305,372)(306,374)(307,379)(308,384)(309,386)(310,382)(311,387)
(312,380)(313,385)(314,381)(315,383)(316,388)(317,393)(318,395)(319,391)
(320,396)(321,389)(322,394)(323,390)(324,392)(325,397)(326,402)(327,404)
(328,400)(329,405)(330,398)(331,403)(332,399)(333,401)(334,406)(335,411)
(336,413)(337,409)(338,414)(339,407)(340,412)(341,408)(342,410)(343,415)
(344,420)(345,422)(346,418)(347,423)(348,416)(349,421)(350,417)(351,419)
(352,424)(353,429)(354,431)(355,427)(356,432)(357,425)(358,430)(359,426)
(360,428)(433,505)(434,510)(435,512)(436,508)(437,513)(438,506)(439,511)
(440,507)(441,509)(442,514)(443,519)(444,521)(445,517)(446,522)(447,515)
(448,520)(449,516)(450,518)(451,523)(452,528)(453,530)(454,526)(455,531)
(456,524)(457,529)(458,525)(459,527)(460,532)(461,537)(462,539)(463,535)
(464,540)(465,533)(466,538)(467,534)(468,536)(469,541)(470,546)(471,548)
(472,544)(473,549)(474,542)(475,547)(476,543)(477,545)(478,550)(479,555)
(480,557)(481,553)(482,558)(483,551)(484,556)(485,552)(486,554)(487,559)
(488,564)(489,566)(490,562)(491,567)(492,560)(493,565)(494,561)(495,563)
(496,568)(497,573)(498,575)(499,571)(500,576)(501,569)(502,574)(503,570)
(504,572);
s1 := Sym(576)!( 1,146)( 2,145)( 3,147)( 4,152)( 5,151)( 6,153)( 7,149)
( 8,148)( 9,150)( 10,155)( 11,154)( 12,156)( 13,161)( 14,160)( 15,162)
( 16,158)( 17,157)( 18,159)( 19,164)( 20,163)( 21,165)( 22,170)( 23,169)
( 24,171)( 25,167)( 26,166)( 27,168)( 28,173)( 29,172)( 30,174)( 31,179)
( 32,178)( 33,180)( 34,176)( 35,175)( 36,177)( 37,182)( 38,181)( 39,183)
( 40,188)( 41,187)( 42,189)( 43,185)( 44,184)( 45,186)( 46,191)( 47,190)
( 48,192)( 49,197)( 50,196)( 51,198)( 52,194)( 53,193)( 54,195)( 55,200)
( 56,199)( 57,201)( 58,206)( 59,205)( 60,207)( 61,203)( 62,202)( 63,204)
( 64,209)( 65,208)( 66,210)( 67,215)( 68,214)( 69,216)( 70,212)( 71,211)
( 72,213)( 73,218)( 74,217)( 75,219)( 76,224)( 77,223)( 78,225)( 79,221)
( 80,220)( 81,222)( 82,227)( 83,226)( 84,228)( 85,233)( 86,232)( 87,234)
( 88,230)( 89,229)( 90,231)( 91,236)( 92,235)( 93,237)( 94,242)( 95,241)
( 96,243)( 97,239)( 98,238)( 99,240)(100,245)(101,244)(102,246)(103,251)
(104,250)(105,252)(106,248)(107,247)(108,249)(109,254)(110,253)(111,255)
(112,260)(113,259)(114,261)(115,257)(116,256)(117,258)(118,263)(119,262)
(120,264)(121,269)(122,268)(123,270)(124,266)(125,265)(126,267)(127,272)
(128,271)(129,273)(130,278)(131,277)(132,279)(133,275)(134,274)(135,276)
(136,281)(137,280)(138,282)(139,287)(140,286)(141,288)(142,284)(143,283)
(144,285)(289,434)(290,433)(291,435)(292,440)(293,439)(294,441)(295,437)
(296,436)(297,438)(298,443)(299,442)(300,444)(301,449)(302,448)(303,450)
(304,446)(305,445)(306,447)(307,452)(308,451)(309,453)(310,458)(311,457)
(312,459)(313,455)(314,454)(315,456)(316,461)(317,460)(318,462)(319,467)
(320,466)(321,468)(322,464)(323,463)(324,465)(325,470)(326,469)(327,471)
(328,476)(329,475)(330,477)(331,473)(332,472)(333,474)(334,479)(335,478)
(336,480)(337,485)(338,484)(339,486)(340,482)(341,481)(342,483)(343,488)
(344,487)(345,489)(346,494)(347,493)(348,495)(349,491)(350,490)(351,492)
(352,497)(353,496)(354,498)(355,503)(356,502)(357,504)(358,500)(359,499)
(360,501)(361,506)(362,505)(363,507)(364,512)(365,511)(366,513)(367,509)
(368,508)(369,510)(370,515)(371,514)(372,516)(373,521)(374,520)(375,522)
(376,518)(377,517)(378,519)(379,524)(380,523)(381,525)(382,530)(383,529)
(384,531)(385,527)(386,526)(387,528)(388,533)(389,532)(390,534)(391,539)
(392,538)(393,540)(394,536)(395,535)(396,537)(397,542)(398,541)(399,543)
(400,548)(401,547)(402,549)(403,545)(404,544)(405,546)(406,551)(407,550)
(408,552)(409,557)(410,556)(411,558)(412,554)(413,553)(414,555)(415,560)
(416,559)(417,561)(418,566)(419,565)(420,567)(421,563)(422,562)(423,564)
(424,569)(425,568)(426,570)(427,575)(428,574)(429,576)(430,572)(431,571)
(432,573);
s2 := Sym(576)!( 1, 73)( 2, 80)( 3, 78)( 4, 79)( 5, 77)( 6, 75)( 7, 76)
( 8, 74)( 9, 81)( 10, 82)( 11, 89)( 12, 87)( 13, 88)( 14, 86)( 15, 84)
( 16, 85)( 17, 83)( 18, 90)( 19, 91)( 20, 98)( 21, 96)( 22, 97)( 23, 95)
( 24, 93)( 25, 94)( 26, 92)( 27, 99)( 28,100)( 29,107)( 30,105)( 31,106)
( 32,104)( 33,102)( 34,103)( 35,101)( 36,108)( 37,118)( 38,125)( 39,123)
( 40,124)( 41,122)( 42,120)( 43,121)( 44,119)( 45,126)( 46,109)( 47,116)
( 48,114)( 49,115)( 50,113)( 51,111)( 52,112)( 53,110)( 54,117)( 55,136)
( 56,143)( 57,141)( 58,142)( 59,140)( 60,138)( 61,139)( 62,137)( 63,144)
( 64,127)( 65,134)( 66,132)( 67,133)( 68,131)( 69,129)( 70,130)( 71,128)
( 72,135)(145,235)(146,242)(147,240)(148,241)(149,239)(150,237)(151,238)
(152,236)(153,243)(154,244)(155,251)(156,249)(157,250)(158,248)(159,246)
(160,247)(161,245)(162,252)(163,217)(164,224)(165,222)(166,223)(167,221)
(168,219)(169,220)(170,218)(171,225)(172,226)(173,233)(174,231)(175,232)
(176,230)(177,228)(178,229)(179,227)(180,234)(181,280)(182,287)(183,285)
(184,286)(185,284)(186,282)(187,283)(188,281)(189,288)(190,271)(191,278)
(192,276)(193,277)(194,275)(195,273)(196,274)(197,272)(198,279)(199,262)
(200,269)(201,267)(202,268)(203,266)(204,264)(205,265)(206,263)(207,270)
(208,253)(209,260)(210,258)(211,259)(212,257)(213,255)(214,256)(215,254)
(216,261)(289,397)(290,404)(291,402)(292,403)(293,401)(294,399)(295,400)
(296,398)(297,405)(298,406)(299,413)(300,411)(301,412)(302,410)(303,408)
(304,409)(305,407)(306,414)(307,415)(308,422)(309,420)(310,421)(311,419)
(312,417)(313,418)(314,416)(315,423)(316,424)(317,431)(318,429)(319,430)
(320,428)(321,426)(322,427)(323,425)(324,432)(325,361)(326,368)(327,366)
(328,367)(329,365)(330,363)(331,364)(332,362)(333,369)(334,370)(335,377)
(336,375)(337,376)(338,374)(339,372)(340,373)(341,371)(342,378)(343,379)
(344,386)(345,384)(346,385)(347,383)(348,381)(349,382)(350,380)(351,387)
(352,388)(353,395)(354,393)(355,394)(356,392)(357,390)(358,391)(359,389)
(360,396)(433,559)(434,566)(435,564)(436,565)(437,563)(438,561)(439,562)
(440,560)(441,567)(442,568)(443,575)(444,573)(445,574)(446,572)(447,570)
(448,571)(449,569)(450,576)(451,541)(452,548)(453,546)(454,547)(455,545)
(456,543)(457,544)(458,542)(459,549)(460,550)(461,557)(462,555)(463,556)
(464,554)(465,552)(466,553)(467,551)(468,558)(469,523)(470,530)(471,528)
(472,529)(473,527)(474,525)(475,526)(476,524)(477,531)(478,532)(479,539)
(480,537)(481,538)(482,536)(483,534)(484,535)(485,533)(486,540)(487,505)
(488,512)(489,510)(490,511)(491,509)(492,507)(493,508)(494,506)(495,513)
(496,514)(497,521)(498,519)(499,520)(500,518)(501,516)(502,517)(503,515)
(504,522);
s3 := Sym(576)!( 1,289)( 2,290)( 3,291)( 4,292)( 5,293)( 6,294)( 7,295)
( 8,296)( 9,297)( 10,298)( 11,299)( 12,300)( 13,301)( 14,302)( 15,303)
( 16,304)( 17,305)( 18,306)( 19,307)( 20,308)( 21,309)( 22,310)( 23,311)
( 24,312)( 25,313)( 26,314)( 27,315)( 28,316)( 29,317)( 30,318)( 31,319)
( 32,320)( 33,321)( 34,322)( 35,323)( 36,324)( 37,334)( 38,335)( 39,336)
( 40,337)( 41,338)( 42,339)( 43,340)( 44,341)( 45,342)( 46,325)( 47,326)
( 48,327)( 49,328)( 50,329)( 51,330)( 52,331)( 53,332)( 54,333)( 55,352)
( 56,353)( 57,354)( 58,355)( 59,356)( 60,357)( 61,358)( 62,359)( 63,360)
( 64,343)( 65,344)( 66,345)( 67,346)( 68,347)( 69,348)( 70,349)( 71,350)
( 72,351)( 73,361)( 74,362)( 75,363)( 76,364)( 77,365)( 78,366)( 79,367)
( 80,368)( 81,369)( 82,370)( 83,371)( 84,372)( 85,373)( 86,374)( 87,375)
( 88,376)( 89,377)( 90,378)( 91,379)( 92,380)( 93,381)( 94,382)( 95,383)
( 96,384)( 97,385)( 98,386)( 99,387)(100,388)(101,389)(102,390)(103,391)
(104,392)(105,393)(106,394)(107,395)(108,396)(109,406)(110,407)(111,408)
(112,409)(113,410)(114,411)(115,412)(116,413)(117,414)(118,397)(119,398)
(120,399)(121,400)(122,401)(123,402)(124,403)(125,404)(126,405)(127,424)
(128,425)(129,426)(130,427)(131,428)(132,429)(133,430)(134,431)(135,432)
(136,415)(137,416)(138,417)(139,418)(140,419)(141,420)(142,421)(143,422)
(144,423)(145,433)(146,434)(147,435)(148,436)(149,437)(150,438)(151,439)
(152,440)(153,441)(154,442)(155,443)(156,444)(157,445)(158,446)(159,447)
(160,448)(161,449)(162,450)(163,451)(164,452)(165,453)(166,454)(167,455)
(168,456)(169,457)(170,458)(171,459)(172,460)(173,461)(174,462)(175,463)
(176,464)(177,465)(178,466)(179,467)(180,468)(181,478)(182,479)(183,480)
(184,481)(185,482)(186,483)(187,484)(188,485)(189,486)(190,469)(191,470)
(192,471)(193,472)(194,473)(195,474)(196,475)(197,476)(198,477)(199,496)
(200,497)(201,498)(202,499)(203,500)(204,501)(205,502)(206,503)(207,504)
(208,487)(209,488)(210,489)(211,490)(212,491)(213,492)(214,493)(215,494)
(216,495)(217,505)(218,506)(219,507)(220,508)(221,509)(222,510)(223,511)
(224,512)(225,513)(226,514)(227,515)(228,516)(229,517)(230,518)(231,519)
(232,520)(233,521)(234,522)(235,523)(236,524)(237,525)(238,526)(239,527)
(240,528)(241,529)(242,530)(243,531)(244,532)(245,533)(246,534)(247,535)
(248,536)(249,537)(250,538)(251,539)(252,540)(253,550)(254,551)(255,552)
(256,553)(257,554)(258,555)(259,556)(260,557)(261,558)(262,541)(263,542)
(264,543)(265,544)(266,545)(267,546)(268,547)(269,548)(270,549)(271,568)
(272,569)(273,570)(274,571)(275,572)(276,573)(277,574)(278,575)(279,576)
(280,559)(281,560)(282,561)(283,562)(284,563)(285,564)(286,565)(287,566)
(288,567);
poly := sub<Sym(576)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope