Polytope of Type {596}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {596}*1192
Also Known As : 596-gon, {596}. if this polytope has another name.
Group : SmallGroup(1192,10)
Rank : 2
Schlafli Type : {596}
Number of vertices, edges, etc : 596, 596
Order of s0s1 : 596
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {298}*596
   4-fold quotients : {149}*298
   149-fold quotients : {4}*8
   298-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,149)(  3,148)(  4,147)(  5,146)(  6,145)(  7,144)(  8,143)(  9,142)
( 10,141)( 11,140)( 12,139)( 13,138)( 14,137)( 15,136)( 16,135)( 17,134)
( 18,133)( 19,132)( 20,131)( 21,130)( 22,129)( 23,128)( 24,127)( 25,126)
( 26,125)( 27,124)( 28,123)( 29,122)( 30,121)( 31,120)( 32,119)( 33,118)
( 34,117)( 35,116)( 36,115)( 37,114)( 38,113)( 39,112)( 40,111)( 41,110)
( 42,109)( 43,108)( 44,107)( 45,106)( 46,105)( 47,104)( 48,103)( 49,102)
( 50,101)( 51,100)( 52, 99)( 53, 98)( 54, 97)( 55, 96)( 56, 95)( 57, 94)
( 58, 93)( 59, 92)( 60, 91)( 61, 90)( 62, 89)( 63, 88)( 64, 87)( 65, 86)
( 66, 85)( 67, 84)( 68, 83)( 69, 82)( 70, 81)( 71, 80)( 72, 79)( 73, 78)
( 74, 77)( 75, 76)(151,298)(152,297)(153,296)(154,295)(155,294)(156,293)
(157,292)(158,291)(159,290)(160,289)(161,288)(162,287)(163,286)(164,285)
(165,284)(166,283)(167,282)(168,281)(169,280)(170,279)(171,278)(172,277)
(173,276)(174,275)(175,274)(176,273)(177,272)(178,271)(179,270)(180,269)
(181,268)(182,267)(183,266)(184,265)(185,264)(186,263)(187,262)(188,261)
(189,260)(190,259)(191,258)(192,257)(193,256)(194,255)(195,254)(196,253)
(197,252)(198,251)(199,250)(200,249)(201,248)(202,247)(203,246)(204,245)
(205,244)(206,243)(207,242)(208,241)(209,240)(210,239)(211,238)(212,237)
(213,236)(214,235)(215,234)(216,233)(217,232)(218,231)(219,230)(220,229)
(221,228)(222,227)(223,226)(224,225)(299,448)(300,596)(301,595)(302,594)
(303,593)(304,592)(305,591)(306,590)(307,589)(308,588)(309,587)(310,586)
(311,585)(312,584)(313,583)(314,582)(315,581)(316,580)(317,579)(318,578)
(319,577)(320,576)(321,575)(322,574)(323,573)(324,572)(325,571)(326,570)
(327,569)(328,568)(329,567)(330,566)(331,565)(332,564)(333,563)(334,562)
(335,561)(336,560)(337,559)(338,558)(339,557)(340,556)(341,555)(342,554)
(343,553)(344,552)(345,551)(346,550)(347,549)(348,548)(349,547)(350,546)
(351,545)(352,544)(353,543)(354,542)(355,541)(356,540)(357,539)(358,538)
(359,537)(360,536)(361,535)(362,534)(363,533)(364,532)(365,531)(366,530)
(367,529)(368,528)(369,527)(370,526)(371,525)(372,524)(373,523)(374,522)
(375,521)(376,520)(377,519)(378,518)(379,517)(380,516)(381,515)(382,514)
(383,513)(384,512)(385,511)(386,510)(387,509)(388,508)(389,507)(390,506)
(391,505)(392,504)(393,503)(394,502)(395,501)(396,500)(397,499)(398,498)
(399,497)(400,496)(401,495)(402,494)(403,493)(404,492)(405,491)(406,490)
(407,489)(408,488)(409,487)(410,486)(411,485)(412,484)(413,483)(414,482)
(415,481)(416,480)(417,479)(418,478)(419,477)(420,476)(421,475)(422,474)
(423,473)(424,472)(425,471)(426,470)(427,469)(428,468)(429,467)(430,466)
(431,465)(432,464)(433,463)(434,462)(435,461)(436,460)(437,459)(438,458)
(439,457)(440,456)(441,455)(442,454)(443,453)(444,452)(445,451)(446,450)
(447,449);;
s1 := (  1,300)(  2,299)(  3,447)(  4,446)(  5,445)(  6,444)(  7,443)(  8,442)
(  9,441)( 10,440)( 11,439)( 12,438)( 13,437)( 14,436)( 15,435)( 16,434)
( 17,433)( 18,432)( 19,431)( 20,430)( 21,429)( 22,428)( 23,427)( 24,426)
( 25,425)( 26,424)( 27,423)( 28,422)( 29,421)( 30,420)( 31,419)( 32,418)
( 33,417)( 34,416)( 35,415)( 36,414)( 37,413)( 38,412)( 39,411)( 40,410)
( 41,409)( 42,408)( 43,407)( 44,406)( 45,405)( 46,404)( 47,403)( 48,402)
( 49,401)( 50,400)( 51,399)( 52,398)( 53,397)( 54,396)( 55,395)( 56,394)
( 57,393)( 58,392)( 59,391)( 60,390)( 61,389)( 62,388)( 63,387)( 64,386)
( 65,385)( 66,384)( 67,383)( 68,382)( 69,381)( 70,380)( 71,379)( 72,378)
( 73,377)( 74,376)( 75,375)( 76,374)( 77,373)( 78,372)( 79,371)( 80,370)
( 81,369)( 82,368)( 83,367)( 84,366)( 85,365)( 86,364)( 87,363)( 88,362)
( 89,361)( 90,360)( 91,359)( 92,358)( 93,357)( 94,356)( 95,355)( 96,354)
( 97,353)( 98,352)( 99,351)(100,350)(101,349)(102,348)(103,347)(104,346)
(105,345)(106,344)(107,343)(108,342)(109,341)(110,340)(111,339)(112,338)
(113,337)(114,336)(115,335)(116,334)(117,333)(118,332)(119,331)(120,330)
(121,329)(122,328)(123,327)(124,326)(125,325)(126,324)(127,323)(128,322)
(129,321)(130,320)(131,319)(132,318)(133,317)(134,316)(135,315)(136,314)
(137,313)(138,312)(139,311)(140,310)(141,309)(142,308)(143,307)(144,306)
(145,305)(146,304)(147,303)(148,302)(149,301)(150,449)(151,448)(152,596)
(153,595)(154,594)(155,593)(156,592)(157,591)(158,590)(159,589)(160,588)
(161,587)(162,586)(163,585)(164,584)(165,583)(166,582)(167,581)(168,580)
(169,579)(170,578)(171,577)(172,576)(173,575)(174,574)(175,573)(176,572)
(177,571)(178,570)(179,569)(180,568)(181,567)(182,566)(183,565)(184,564)
(185,563)(186,562)(187,561)(188,560)(189,559)(190,558)(191,557)(192,556)
(193,555)(194,554)(195,553)(196,552)(197,551)(198,550)(199,549)(200,548)
(201,547)(202,546)(203,545)(204,544)(205,543)(206,542)(207,541)(208,540)
(209,539)(210,538)(211,537)(212,536)(213,535)(214,534)(215,533)(216,532)
(217,531)(218,530)(219,529)(220,528)(221,527)(222,526)(223,525)(224,524)
(225,523)(226,522)(227,521)(228,520)(229,519)(230,518)(231,517)(232,516)
(233,515)(234,514)(235,513)(236,512)(237,511)(238,510)(239,509)(240,508)
(241,507)(242,506)(243,505)(244,504)(245,503)(246,502)(247,501)(248,500)
(249,499)(250,498)(251,497)(252,496)(253,495)(254,494)(255,493)(256,492)
(257,491)(258,490)(259,489)(260,488)(261,487)(262,486)(263,485)(264,484)
(265,483)(266,482)(267,481)(268,480)(269,479)(270,478)(271,477)(272,476)
(273,475)(274,474)(275,473)(276,472)(277,471)(278,470)(279,469)(280,468)
(281,467)(282,466)(283,465)(284,464)(285,463)(286,462)(287,461)(288,460)
(289,459)(290,458)(291,457)(292,456)(293,455)(294,454)(295,453)(296,452)
(297,451)(298,450);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(596)!(  2,149)(  3,148)(  4,147)(  5,146)(  6,145)(  7,144)(  8,143)
(  9,142)( 10,141)( 11,140)( 12,139)( 13,138)( 14,137)( 15,136)( 16,135)
( 17,134)( 18,133)( 19,132)( 20,131)( 21,130)( 22,129)( 23,128)( 24,127)
( 25,126)( 26,125)( 27,124)( 28,123)( 29,122)( 30,121)( 31,120)( 32,119)
( 33,118)( 34,117)( 35,116)( 36,115)( 37,114)( 38,113)( 39,112)( 40,111)
( 41,110)( 42,109)( 43,108)( 44,107)( 45,106)( 46,105)( 47,104)( 48,103)
( 49,102)( 50,101)( 51,100)( 52, 99)( 53, 98)( 54, 97)( 55, 96)( 56, 95)
( 57, 94)( 58, 93)( 59, 92)( 60, 91)( 61, 90)( 62, 89)( 63, 88)( 64, 87)
( 65, 86)( 66, 85)( 67, 84)( 68, 83)( 69, 82)( 70, 81)( 71, 80)( 72, 79)
( 73, 78)( 74, 77)( 75, 76)(151,298)(152,297)(153,296)(154,295)(155,294)
(156,293)(157,292)(158,291)(159,290)(160,289)(161,288)(162,287)(163,286)
(164,285)(165,284)(166,283)(167,282)(168,281)(169,280)(170,279)(171,278)
(172,277)(173,276)(174,275)(175,274)(176,273)(177,272)(178,271)(179,270)
(180,269)(181,268)(182,267)(183,266)(184,265)(185,264)(186,263)(187,262)
(188,261)(189,260)(190,259)(191,258)(192,257)(193,256)(194,255)(195,254)
(196,253)(197,252)(198,251)(199,250)(200,249)(201,248)(202,247)(203,246)
(204,245)(205,244)(206,243)(207,242)(208,241)(209,240)(210,239)(211,238)
(212,237)(213,236)(214,235)(215,234)(216,233)(217,232)(218,231)(219,230)
(220,229)(221,228)(222,227)(223,226)(224,225)(299,448)(300,596)(301,595)
(302,594)(303,593)(304,592)(305,591)(306,590)(307,589)(308,588)(309,587)
(310,586)(311,585)(312,584)(313,583)(314,582)(315,581)(316,580)(317,579)
(318,578)(319,577)(320,576)(321,575)(322,574)(323,573)(324,572)(325,571)
(326,570)(327,569)(328,568)(329,567)(330,566)(331,565)(332,564)(333,563)
(334,562)(335,561)(336,560)(337,559)(338,558)(339,557)(340,556)(341,555)
(342,554)(343,553)(344,552)(345,551)(346,550)(347,549)(348,548)(349,547)
(350,546)(351,545)(352,544)(353,543)(354,542)(355,541)(356,540)(357,539)
(358,538)(359,537)(360,536)(361,535)(362,534)(363,533)(364,532)(365,531)
(366,530)(367,529)(368,528)(369,527)(370,526)(371,525)(372,524)(373,523)
(374,522)(375,521)(376,520)(377,519)(378,518)(379,517)(380,516)(381,515)
(382,514)(383,513)(384,512)(385,511)(386,510)(387,509)(388,508)(389,507)
(390,506)(391,505)(392,504)(393,503)(394,502)(395,501)(396,500)(397,499)
(398,498)(399,497)(400,496)(401,495)(402,494)(403,493)(404,492)(405,491)
(406,490)(407,489)(408,488)(409,487)(410,486)(411,485)(412,484)(413,483)
(414,482)(415,481)(416,480)(417,479)(418,478)(419,477)(420,476)(421,475)
(422,474)(423,473)(424,472)(425,471)(426,470)(427,469)(428,468)(429,467)
(430,466)(431,465)(432,464)(433,463)(434,462)(435,461)(436,460)(437,459)
(438,458)(439,457)(440,456)(441,455)(442,454)(443,453)(444,452)(445,451)
(446,450)(447,449);
s1 := Sym(596)!(  1,300)(  2,299)(  3,447)(  4,446)(  5,445)(  6,444)(  7,443)
(  8,442)(  9,441)( 10,440)( 11,439)( 12,438)( 13,437)( 14,436)( 15,435)
( 16,434)( 17,433)( 18,432)( 19,431)( 20,430)( 21,429)( 22,428)( 23,427)
( 24,426)( 25,425)( 26,424)( 27,423)( 28,422)( 29,421)( 30,420)( 31,419)
( 32,418)( 33,417)( 34,416)( 35,415)( 36,414)( 37,413)( 38,412)( 39,411)
( 40,410)( 41,409)( 42,408)( 43,407)( 44,406)( 45,405)( 46,404)( 47,403)
( 48,402)( 49,401)( 50,400)( 51,399)( 52,398)( 53,397)( 54,396)( 55,395)
( 56,394)( 57,393)( 58,392)( 59,391)( 60,390)( 61,389)( 62,388)( 63,387)
( 64,386)( 65,385)( 66,384)( 67,383)( 68,382)( 69,381)( 70,380)( 71,379)
( 72,378)( 73,377)( 74,376)( 75,375)( 76,374)( 77,373)( 78,372)( 79,371)
( 80,370)( 81,369)( 82,368)( 83,367)( 84,366)( 85,365)( 86,364)( 87,363)
( 88,362)( 89,361)( 90,360)( 91,359)( 92,358)( 93,357)( 94,356)( 95,355)
( 96,354)( 97,353)( 98,352)( 99,351)(100,350)(101,349)(102,348)(103,347)
(104,346)(105,345)(106,344)(107,343)(108,342)(109,341)(110,340)(111,339)
(112,338)(113,337)(114,336)(115,335)(116,334)(117,333)(118,332)(119,331)
(120,330)(121,329)(122,328)(123,327)(124,326)(125,325)(126,324)(127,323)
(128,322)(129,321)(130,320)(131,319)(132,318)(133,317)(134,316)(135,315)
(136,314)(137,313)(138,312)(139,311)(140,310)(141,309)(142,308)(143,307)
(144,306)(145,305)(146,304)(147,303)(148,302)(149,301)(150,449)(151,448)
(152,596)(153,595)(154,594)(155,593)(156,592)(157,591)(158,590)(159,589)
(160,588)(161,587)(162,586)(163,585)(164,584)(165,583)(166,582)(167,581)
(168,580)(169,579)(170,578)(171,577)(172,576)(173,575)(174,574)(175,573)
(176,572)(177,571)(178,570)(179,569)(180,568)(181,567)(182,566)(183,565)
(184,564)(185,563)(186,562)(187,561)(188,560)(189,559)(190,558)(191,557)
(192,556)(193,555)(194,554)(195,553)(196,552)(197,551)(198,550)(199,549)
(200,548)(201,547)(202,546)(203,545)(204,544)(205,543)(206,542)(207,541)
(208,540)(209,539)(210,538)(211,537)(212,536)(213,535)(214,534)(215,533)
(216,532)(217,531)(218,530)(219,529)(220,528)(221,527)(222,526)(223,525)
(224,524)(225,523)(226,522)(227,521)(228,520)(229,519)(230,518)(231,517)
(232,516)(233,515)(234,514)(235,513)(236,512)(237,511)(238,510)(239,509)
(240,508)(241,507)(242,506)(243,505)(244,504)(245,503)(246,502)(247,501)
(248,500)(249,499)(250,498)(251,497)(252,496)(253,495)(254,494)(255,493)
(256,492)(257,491)(258,490)(259,489)(260,488)(261,487)(262,486)(263,485)
(264,484)(265,483)(266,482)(267,481)(268,480)(269,479)(270,478)(271,477)
(272,476)(273,475)(274,474)(275,473)(276,472)(277,471)(278,470)(279,469)
(280,468)(281,467)(282,466)(283,465)(284,464)(285,463)(286,462)(287,461)
(288,460)(289,459)(290,458)(291,457)(292,456)(293,455)(294,454)(295,453)
(296,452)(297,451)(298,450);
poly := sub<Sym(596)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope