include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,2,10,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,10,6}*1200
if this polytope has a name.
Group : SmallGroup(1200,1006)
Rank : 5
Schlafli Type : {5,2,10,6}
Number of vertices, edges, etc : 5, 5, 10, 30, 6
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {5,2,10,2}*400
5-fold quotients : {5,2,2,6}*240
6-fold quotients : {5,2,5,2}*200
10-fold quotients : {5,2,2,3}*120
15-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := (10,11)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)
(32,33)(34,35);;
s3 := ( 6,10)( 7,14)( 8,18)( 9,16)(11,20)(12,24)(13,22)(15,26)(17,30)(19,28)
(23,34)(25,32)(29,31)(33,35);;
s4 := ( 6,12)( 7, 8)( 9,13)(10,22)(11,23)(14,16)(15,17)(18,24)(19,25)(20,32)
(21,33)(26,28)(27,29)(30,34)(31,35);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s4*s3*s2*s3*s4*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(35)!(2,3)(4,5);
s1 := Sym(35)!(1,2)(3,4);
s2 := Sym(35)!(10,11)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)
(30,31)(32,33)(34,35);
s3 := Sym(35)!( 6,10)( 7,14)( 8,18)( 9,16)(11,20)(12,24)(13,22)(15,26)(17,30)
(19,28)(23,34)(25,32)(29,31)(33,35);
s4 := Sym(35)!( 6,12)( 7, 8)( 9,13)(10,22)(11,23)(14,16)(15,17)(18,24)(19,25)
(20,32)(21,33)(26,28)(27,29)(30,34)(31,35);
poly := sub<Sym(35)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope