include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,2,5,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,5,2}*200
if this polytope has a name.
Group : SmallGroup(200,49)
Rank : 5
Schlafli Type : {5,2,5,2}
Number of vertices, edges, etc : 5, 5, 5, 5, 2
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{5,2,5,2,2} of size 400
{5,2,5,2,3} of size 600
{5,2,5,2,4} of size 800
{5,2,5,2,5} of size 1000
{5,2,5,2,6} of size 1200
{5,2,5,2,7} of size 1400
{5,2,5,2,8} of size 1600
{5,2,5,2,9} of size 1800
{5,2,5,2,10} of size 2000
Vertex Figure Of :
{2,5,2,5,2} of size 400
{3,5,2,5,2} of size 1200
{5,5,2,5,2} of size 1200
{10,5,2,5,2} of size 2000
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {5,2,10,2}*400, {10,2,5,2}*400
3-fold covers : {5,2,15,2}*600, {15,2,5,2}*600
4-fold covers : {5,2,20,2}*800, {20,2,5,2}*800, {5,2,10,4}*800, {10,2,10,2}*800
5-fold covers : {5,2,25,2}*1000, {25,2,5,2}*1000, {5,10,5,2}*1000, {5,2,5,10}*1000
6-fold covers : {5,2,10,6}*1200, {5,2,30,2}*1200, {10,2,15,2}*1200, {15,2,10,2}*1200, {30,2,5,2}*1200
7-fold covers : {5,2,35,2}*1400, {35,2,5,2}*1400
8-fold covers : {5,2,20,4}*1600, {5,2,40,2}*1600, {40,2,5,2}*1600, {5,2,10,8}*1600, {10,2,20,2}*1600, {20,2,10,2}*1600, {10,2,10,4}*1600, {10,4,10,2}*1600
9-fold covers : {5,2,45,2}*1800, {45,2,5,2}*1800, {5,2,15,6}*1800, {15,2,15,2}*1800
10-fold covers : {5,2,50,2}*2000, {10,2,25,2}*2000, {25,2,10,2}*2000, {50,2,5,2}*2000, {5,10,10,2}*2000a, {10,10,5,2}*2000a, {5,2,10,10}*2000a, {5,2,10,10}*2000c, {5,10,10,2}*2000b, {10,2,5,10}*2000, {10,10,5,2}*2000b
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 7, 8)( 9,10);;
s3 := (6,7)(8,9);;
s4 := (11,12);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(12)!(2,3)(4,5);
s1 := Sym(12)!(1,2)(3,4);
s2 := Sym(12)!( 7, 8)( 9,10);
s3 := Sym(12)!(6,7)(8,9);
s4 := Sym(12)!(11,12);
poly := sub<Sym(12)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope