include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {30,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,10,2}*1200c
if this polytope has a name.
Group : SmallGroup(1200,1028)
Rank : 4
Schlafli Type : {30,10,2}
Number of vertices, edges, etc : 30, 150, 10, 2
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {15,10,2}*600
3-fold quotients : {10,10,2}*400c
5-fold quotients : {30,2,2}*240
6-fold quotients : {5,10,2}*200
10-fold quotients : {15,2,2}*120
15-fold quotients : {10,2,2}*80
25-fold quotients : {6,2,2}*48
30-fold quotients : {5,2,2}*40
50-fold quotients : {3,2,2}*24
75-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 21)( 7, 25)( 8, 24)( 9, 23)( 10, 22)( 11, 16)
( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 26, 51)( 27, 55)( 28, 54)( 29, 53)
( 30, 52)( 31, 71)( 32, 75)( 33, 74)( 34, 73)( 35, 72)( 36, 66)( 37, 70)
( 38, 69)( 39, 68)( 40, 67)( 41, 61)( 42, 65)( 43, 64)( 44, 63)( 45, 62)
( 46, 56)( 47, 60)( 48, 59)( 49, 58)( 50, 57)( 77, 80)( 78, 79)( 81, 96)
( 82,100)( 83, 99)( 84, 98)( 85, 97)( 86, 91)( 87, 95)( 88, 94)( 89, 93)
( 90, 92)(101,126)(102,130)(103,129)(104,128)(105,127)(106,146)(107,150)
(108,149)(109,148)(110,147)(111,141)(112,145)(113,144)(114,143)(115,142)
(116,136)(117,140)(118,139)(119,138)(120,137)(121,131)(122,135)(123,134)
(124,133)(125,132);;
s1 := ( 1,107)( 2,106)( 3,110)( 4,109)( 5,108)( 6,102)( 7,101)( 8,105)
( 9,104)( 10,103)( 11,122)( 12,121)( 13,125)( 14,124)( 15,123)( 16,117)
( 17,116)( 18,120)( 19,119)( 20,118)( 21,112)( 22,111)( 23,115)( 24,114)
( 25,113)( 26, 82)( 27, 81)( 28, 85)( 29, 84)( 30, 83)( 31, 77)( 32, 76)
( 33, 80)( 34, 79)( 35, 78)( 36, 97)( 37, 96)( 38,100)( 39, 99)( 40, 98)
( 41, 92)( 42, 91)( 43, 95)( 44, 94)( 45, 93)( 46, 87)( 47, 86)( 48, 90)
( 49, 89)( 50, 88)( 51,132)( 52,131)( 53,135)( 54,134)( 55,133)( 56,127)
( 57,126)( 58,130)( 59,129)( 60,128)( 61,147)( 62,146)( 63,150)( 64,149)
( 65,148)( 66,142)( 67,141)( 68,145)( 69,144)( 70,143)( 71,137)( 72,136)
( 73,140)( 74,139)( 75,138);;
s2 := ( 6, 21)( 7, 22)( 8, 23)( 9, 24)( 10, 25)( 11, 16)( 12, 17)( 13, 18)
( 14, 19)( 15, 20)( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 41)
( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 56, 71)( 57, 72)( 58, 73)( 59, 74)
( 60, 75)( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 81, 96)( 82, 97)
( 83, 98)( 84, 99)( 85,100)( 86, 91)( 87, 92)( 88, 93)( 89, 94)( 90, 95)
(106,121)(107,122)(108,123)(109,124)(110,125)(111,116)(112,117)(113,118)
(114,119)(115,120)(131,146)(132,147)(133,148)(134,149)(135,150)(136,141)
(137,142)(138,143)(139,144)(140,145);;
s3 := (151,152);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(152)!( 2, 5)( 3, 4)( 6, 21)( 7, 25)( 8, 24)( 9, 23)( 10, 22)
( 11, 16)( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 26, 51)( 27, 55)( 28, 54)
( 29, 53)( 30, 52)( 31, 71)( 32, 75)( 33, 74)( 34, 73)( 35, 72)( 36, 66)
( 37, 70)( 38, 69)( 39, 68)( 40, 67)( 41, 61)( 42, 65)( 43, 64)( 44, 63)
( 45, 62)( 46, 56)( 47, 60)( 48, 59)( 49, 58)( 50, 57)( 77, 80)( 78, 79)
( 81, 96)( 82,100)( 83, 99)( 84, 98)( 85, 97)( 86, 91)( 87, 95)( 88, 94)
( 89, 93)( 90, 92)(101,126)(102,130)(103,129)(104,128)(105,127)(106,146)
(107,150)(108,149)(109,148)(110,147)(111,141)(112,145)(113,144)(114,143)
(115,142)(116,136)(117,140)(118,139)(119,138)(120,137)(121,131)(122,135)
(123,134)(124,133)(125,132);
s1 := Sym(152)!( 1,107)( 2,106)( 3,110)( 4,109)( 5,108)( 6,102)( 7,101)
( 8,105)( 9,104)( 10,103)( 11,122)( 12,121)( 13,125)( 14,124)( 15,123)
( 16,117)( 17,116)( 18,120)( 19,119)( 20,118)( 21,112)( 22,111)( 23,115)
( 24,114)( 25,113)( 26, 82)( 27, 81)( 28, 85)( 29, 84)( 30, 83)( 31, 77)
( 32, 76)( 33, 80)( 34, 79)( 35, 78)( 36, 97)( 37, 96)( 38,100)( 39, 99)
( 40, 98)( 41, 92)( 42, 91)( 43, 95)( 44, 94)( 45, 93)( 46, 87)( 47, 86)
( 48, 90)( 49, 89)( 50, 88)( 51,132)( 52,131)( 53,135)( 54,134)( 55,133)
( 56,127)( 57,126)( 58,130)( 59,129)( 60,128)( 61,147)( 62,146)( 63,150)
( 64,149)( 65,148)( 66,142)( 67,141)( 68,145)( 69,144)( 70,143)( 71,137)
( 72,136)( 73,140)( 74,139)( 75,138);
s2 := Sym(152)!( 6, 21)( 7, 22)( 8, 23)( 9, 24)( 10, 25)( 11, 16)( 12, 17)
( 13, 18)( 14, 19)( 15, 20)( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)
( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 56, 71)( 57, 72)( 58, 73)
( 59, 74)( 60, 75)( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 81, 96)
( 82, 97)( 83, 98)( 84, 99)( 85,100)( 86, 91)( 87, 92)( 88, 93)( 89, 94)
( 90, 95)(106,121)(107,122)(108,123)(109,124)(110,125)(111,116)(112,117)
(113,118)(114,119)(115,120)(131,146)(132,147)(133,148)(134,149)(135,150)
(136,141)(137,142)(138,143)(139,144)(140,145);
s3 := Sym(152)!(151,152);
poly := sub<Sym(152)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope