include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {76,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {76,4}*1216
if this polytope has a name.
Group : SmallGroup(1216,737)
Rank : 3
Schlafli Type : {76,4}
Number of vertices, edges, etc : 152, 304, 8
Order of s0s1s2 : 76
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {76,4}*608
4-fold quotients : {76,2}*304, {38,4}*304
8-fold quotients : {38,2}*152
16-fold quotients : {19,2}*76
19-fold quotients : {4,4}*64
38-fold quotients : {4,4}*32
76-fold quotients : {2,4}*16, {4,2}*16
152-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 77)( 2, 95)( 3, 94)( 4, 93)( 5, 92)( 6, 91)( 7, 90)( 8, 89)
( 9, 88)( 10, 87)( 11, 86)( 12, 85)( 13, 84)( 14, 83)( 15, 82)( 16, 81)
( 17, 80)( 18, 79)( 19, 78)( 20, 96)( 21,114)( 22,113)( 23,112)( 24,111)
( 25,110)( 26,109)( 27,108)( 28,107)( 29,106)( 30,105)( 31,104)( 32,103)
( 33,102)( 34,101)( 35,100)( 36, 99)( 37, 98)( 38, 97)( 39,115)( 40,133)
( 41,132)( 42,131)( 43,130)( 44,129)( 45,128)( 46,127)( 47,126)( 48,125)
( 49,124)( 50,123)( 51,122)( 52,121)( 53,120)( 54,119)( 55,118)( 56,117)
( 57,116)( 58,134)( 59,152)( 60,151)( 61,150)( 62,149)( 63,148)( 64,147)
( 65,146)( 66,145)( 67,144)( 68,143)( 69,142)( 70,141)( 71,140)( 72,139)
( 73,138)( 74,137)( 75,136)( 76,135);;
s1 := ( 1, 2)( 3, 19)( 4, 18)( 5, 17)( 6, 16)( 7, 15)( 8, 14)( 9, 13)
( 10, 12)( 20, 21)( 22, 38)( 23, 37)( 24, 36)( 25, 35)( 26, 34)( 27, 33)
( 28, 32)( 29, 31)( 39, 40)( 41, 57)( 42, 56)( 43, 55)( 44, 54)( 45, 53)
( 46, 52)( 47, 51)( 48, 50)( 58, 59)( 60, 76)( 61, 75)( 62, 74)( 63, 73)
( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 77,116)( 78,115)( 79,133)( 80,132)
( 81,131)( 82,130)( 83,129)( 84,128)( 85,127)( 86,126)( 87,125)( 88,124)
( 89,123)( 90,122)( 91,121)( 92,120)( 93,119)( 94,118)( 95,117)( 96,135)
( 97,134)( 98,152)( 99,151)(100,150)(101,149)(102,148)(103,147)(104,146)
(105,145)(106,144)(107,143)(108,142)(109,141)(110,140)(111,139)(112,138)
(113,137)(114,136);;
s2 := ( 39, 58)( 40, 59)( 41, 60)( 42, 61)( 43, 62)( 44, 63)( 45, 64)( 46, 65)
( 47, 66)( 48, 67)( 49, 68)( 50, 69)( 51, 70)( 52, 71)( 53, 72)( 54, 73)
( 55, 74)( 56, 75)( 57, 76)(115,134)(116,135)(117,136)(118,137)(119,138)
(120,139)(121,140)(122,141)(123,142)(124,143)(125,144)(126,145)(127,146)
(128,147)(129,148)(130,149)(131,150)(132,151)(133,152);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(152)!( 1, 77)( 2, 95)( 3, 94)( 4, 93)( 5, 92)( 6, 91)( 7, 90)
( 8, 89)( 9, 88)( 10, 87)( 11, 86)( 12, 85)( 13, 84)( 14, 83)( 15, 82)
( 16, 81)( 17, 80)( 18, 79)( 19, 78)( 20, 96)( 21,114)( 22,113)( 23,112)
( 24,111)( 25,110)( 26,109)( 27,108)( 28,107)( 29,106)( 30,105)( 31,104)
( 32,103)( 33,102)( 34,101)( 35,100)( 36, 99)( 37, 98)( 38, 97)( 39,115)
( 40,133)( 41,132)( 42,131)( 43,130)( 44,129)( 45,128)( 46,127)( 47,126)
( 48,125)( 49,124)( 50,123)( 51,122)( 52,121)( 53,120)( 54,119)( 55,118)
( 56,117)( 57,116)( 58,134)( 59,152)( 60,151)( 61,150)( 62,149)( 63,148)
( 64,147)( 65,146)( 66,145)( 67,144)( 68,143)( 69,142)( 70,141)( 71,140)
( 72,139)( 73,138)( 74,137)( 75,136)( 76,135);
s1 := Sym(152)!( 1, 2)( 3, 19)( 4, 18)( 5, 17)( 6, 16)( 7, 15)( 8, 14)
( 9, 13)( 10, 12)( 20, 21)( 22, 38)( 23, 37)( 24, 36)( 25, 35)( 26, 34)
( 27, 33)( 28, 32)( 29, 31)( 39, 40)( 41, 57)( 42, 56)( 43, 55)( 44, 54)
( 45, 53)( 46, 52)( 47, 51)( 48, 50)( 58, 59)( 60, 76)( 61, 75)( 62, 74)
( 63, 73)( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 77,116)( 78,115)( 79,133)
( 80,132)( 81,131)( 82,130)( 83,129)( 84,128)( 85,127)( 86,126)( 87,125)
( 88,124)( 89,123)( 90,122)( 91,121)( 92,120)( 93,119)( 94,118)( 95,117)
( 96,135)( 97,134)( 98,152)( 99,151)(100,150)(101,149)(102,148)(103,147)
(104,146)(105,145)(106,144)(107,143)(108,142)(109,141)(110,140)(111,139)
(112,138)(113,137)(114,136);
s2 := Sym(152)!( 39, 58)( 40, 59)( 41, 60)( 42, 61)( 43, 62)( 44, 63)( 45, 64)
( 46, 65)( 47, 66)( 48, 67)( 49, 68)( 50, 69)( 51, 70)( 52, 71)( 53, 72)
( 54, 73)( 55, 74)( 56, 75)( 57, 76)(115,134)(116,135)(117,136)(118,137)
(119,138)(120,139)(121,140)(122,141)(123,142)(124,143)(125,144)(126,145)
(127,146)(128,147)(129,148)(130,149)(131,150)(132,151)(133,152);
poly := sub<Sym(152)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope