Polytope of Type {154,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {154,2,2}*1232
if this polytope has a name.
Group : SmallGroup(1232,152)
Rank : 4
Schlafli Type : {154,2,2}
Number of vertices, edges, etc : 154, 154, 2, 2
Order of s0s1s2s3 : 154
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {77,2,2}*616
   7-fold quotients : {22,2,2}*176
   11-fold quotients : {14,2,2}*112
   14-fold quotients : {11,2,2}*88
   22-fold quotients : {7,2,2}*56
   77-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12, 67)( 13, 77)( 14, 76)
( 15, 75)( 16, 74)( 17, 73)( 18, 72)( 19, 71)( 20, 70)( 21, 69)( 22, 68)
( 23, 56)( 24, 66)( 25, 65)( 26, 64)( 27, 63)( 28, 62)( 29, 61)( 30, 60)
( 31, 59)( 32, 58)( 33, 57)( 34, 45)( 35, 55)( 36, 54)( 37, 53)( 38, 52)
( 39, 51)( 40, 50)( 41, 49)( 42, 48)( 43, 47)( 44, 46)( 79, 88)( 80, 87)
( 81, 86)( 82, 85)( 83, 84)( 89,144)( 90,154)( 91,153)( 92,152)( 93,151)
( 94,150)( 95,149)( 96,148)( 97,147)( 98,146)( 99,145)(100,133)(101,143)
(102,142)(103,141)(104,140)(105,139)(106,138)(107,137)(108,136)(109,135)
(110,134)(111,122)(112,132)(113,131)(114,130)(115,129)(116,128)(117,127)
(118,126)(119,125)(120,124)(121,123);;
s1 := (  1, 90)(  2, 89)(  3, 99)(  4, 98)(  5, 97)(  6, 96)(  7, 95)(  8, 94)
(  9, 93)( 10, 92)( 11, 91)( 12, 79)( 13, 78)( 14, 88)( 15, 87)( 16, 86)
( 17, 85)( 18, 84)( 19, 83)( 20, 82)( 21, 81)( 22, 80)( 23,145)( 24,144)
( 25,154)( 26,153)( 27,152)( 28,151)( 29,150)( 30,149)( 31,148)( 32,147)
( 33,146)( 34,134)( 35,133)( 36,143)( 37,142)( 38,141)( 39,140)( 40,139)
( 41,138)( 42,137)( 43,136)( 44,135)( 45,123)( 46,122)( 47,132)( 48,131)
( 49,130)( 50,129)( 51,128)( 52,127)( 53,126)( 54,125)( 55,124)( 56,112)
( 57,111)( 58,121)( 59,120)( 60,119)( 61,118)( 62,117)( 63,116)( 64,115)
( 65,114)( 66,113)( 67,101)( 68,100)( 69,110)( 70,109)( 71,108)( 72,107)
( 73,106)( 74,105)( 75,104)( 76,103)( 77,102);;
s2 := (155,156);;
s3 := (157,158);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(158)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12, 67)( 13, 77)
( 14, 76)( 15, 75)( 16, 74)( 17, 73)( 18, 72)( 19, 71)( 20, 70)( 21, 69)
( 22, 68)( 23, 56)( 24, 66)( 25, 65)( 26, 64)( 27, 63)( 28, 62)( 29, 61)
( 30, 60)( 31, 59)( 32, 58)( 33, 57)( 34, 45)( 35, 55)( 36, 54)( 37, 53)
( 38, 52)( 39, 51)( 40, 50)( 41, 49)( 42, 48)( 43, 47)( 44, 46)( 79, 88)
( 80, 87)( 81, 86)( 82, 85)( 83, 84)( 89,144)( 90,154)( 91,153)( 92,152)
( 93,151)( 94,150)( 95,149)( 96,148)( 97,147)( 98,146)( 99,145)(100,133)
(101,143)(102,142)(103,141)(104,140)(105,139)(106,138)(107,137)(108,136)
(109,135)(110,134)(111,122)(112,132)(113,131)(114,130)(115,129)(116,128)
(117,127)(118,126)(119,125)(120,124)(121,123);
s1 := Sym(158)!(  1, 90)(  2, 89)(  3, 99)(  4, 98)(  5, 97)(  6, 96)(  7, 95)
(  8, 94)(  9, 93)( 10, 92)( 11, 91)( 12, 79)( 13, 78)( 14, 88)( 15, 87)
( 16, 86)( 17, 85)( 18, 84)( 19, 83)( 20, 82)( 21, 81)( 22, 80)( 23,145)
( 24,144)( 25,154)( 26,153)( 27,152)( 28,151)( 29,150)( 30,149)( 31,148)
( 32,147)( 33,146)( 34,134)( 35,133)( 36,143)( 37,142)( 38,141)( 39,140)
( 40,139)( 41,138)( 42,137)( 43,136)( 44,135)( 45,123)( 46,122)( 47,132)
( 48,131)( 49,130)( 50,129)( 51,128)( 52,127)( 53,126)( 54,125)( 55,124)
( 56,112)( 57,111)( 58,121)( 59,120)( 60,119)( 61,118)( 62,117)( 63,116)
( 64,115)( 65,114)( 66,113)( 67,101)( 68,100)( 69,110)( 70,109)( 71,108)
( 72,107)( 73,106)( 74,105)( 75,104)( 76,103)( 77,102);
s2 := Sym(158)!(155,156);
s3 := Sym(158)!(157,158);
poly := sub<Sym(158)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope