include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,2,52}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,52}*1248
if this polytope has a name.
Group : SmallGroup(1248,1320)
Rank : 4
Schlafli Type : {6,2,52}
Number of vertices, edges, etc : 6, 6, 52, 52
Order of s0s1s2s3 : 156
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,52}*624, {6,2,26}*624
3-fold quotients : {2,2,52}*416
4-fold quotients : {3,2,26}*312, {6,2,13}*312
6-fold quotients : {2,2,26}*208
8-fold quotients : {3,2,13}*156
12-fold quotients : {2,2,13}*104
13-fold quotients : {6,2,4}*96
26-fold quotients : {3,2,4}*48, {6,2,2}*48
39-fold quotients : {2,2,4}*32
52-fold quotients : {3,2,2}*24
78-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 8, 9)(10,11)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,26)(27,28)
(29,32)(30,31)(33,34)(35,36)(37,40)(38,39)(41,42)(43,44)(45,48)(46,47)(49,50)
(51,52)(53,56)(54,55)(57,58);;
s3 := ( 7,13)( 8,10)( 9,19)(11,21)(12,15)(14,17)(16,27)(18,29)(20,23)(22,25)
(24,35)(26,37)(28,31)(30,33)(32,43)(34,45)(36,39)(38,41)(40,51)(42,53)(44,47)
(46,49)(48,57)(50,54)(52,55)(56,58);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(58)!(3,4)(5,6);
s1 := Sym(58)!(1,5)(2,3)(4,6);
s2 := Sym(58)!( 8, 9)(10,11)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,26)
(27,28)(29,32)(30,31)(33,34)(35,36)(37,40)(38,39)(41,42)(43,44)(45,48)(46,47)
(49,50)(51,52)(53,56)(54,55)(57,58);
s3 := Sym(58)!( 7,13)( 8,10)( 9,19)(11,21)(12,15)(14,17)(16,27)(18,29)(20,23)
(22,25)(24,35)(26,37)(28,31)(30,33)(32,43)(34,45)(36,39)(38,41)(40,51)(42,53)
(44,47)(46,49)(48,57)(50,54)(52,55)(56,58);
poly := sub<Sym(58)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope