include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,52}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,52}*624
if this polytope has a name.
Group : SmallGroup(624,179)
Rank : 4
Schlafli Type : {3,2,52}
Number of vertices, edges, etc : 3, 3, 52, 52
Order of s0s1s2s3 : 156
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,2,52,2} of size 1248
Vertex Figure Of :
{2,3,2,52} of size 1248
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,26}*312
4-fold quotients : {3,2,13}*156
13-fold quotients : {3,2,4}*48
26-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,2,104}*1248, {6,2,52}*1248
3-fold covers : {9,2,52}*1872, {3,6,52}*1872, {3,2,156}*1872
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 6)( 7, 8)(10,13)(11,12)(14,15)(16,17)(18,21)(19,20)(22,23)(24,25)
(26,29)(27,28)(30,31)(32,33)(34,37)(35,36)(38,39)(40,41)(42,45)(43,44)(46,47)
(48,49)(50,53)(51,52)(54,55);;
s3 := ( 4,10)( 5, 7)( 6,16)( 8,18)( 9,12)(11,14)(13,24)(15,26)(17,20)(19,22)
(21,32)(23,34)(25,28)(27,30)(29,40)(31,42)(33,36)(35,38)(37,48)(39,50)(41,44)
(43,46)(45,54)(47,51)(49,52)(53,55);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(55)!(2,3);
s1 := Sym(55)!(1,2);
s2 := Sym(55)!( 5, 6)( 7, 8)(10,13)(11,12)(14,15)(16,17)(18,21)(19,20)(22,23)
(24,25)(26,29)(27,28)(30,31)(32,33)(34,37)(35,36)(38,39)(40,41)(42,45)(43,44)
(46,47)(48,49)(50,53)(51,52)(54,55);
s3 := Sym(55)!( 4,10)( 5, 7)( 6,16)( 8,18)( 9,12)(11,14)(13,24)(15,26)(17,20)
(19,22)(21,32)(23,34)(25,28)(27,30)(29,40)(31,42)(33,36)(35,38)(37,48)(39,50)
(41,44)(43,46)(45,54)(47,51)(49,52)(53,55);
poly := sub<Sym(55)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope