Polytope of Type {2,78,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,78,2,2}*1248
if this polytope has a name.
Group : SmallGroup(1248,1459)
Rank : 5
Schlafli Type : {2,78,2,2}
Number of vertices, edges, etc : 2, 78, 78, 2, 2
Order of s0s1s2s3s4 : 78
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,39,2,2}*624
   3-fold quotients : {2,26,2,2}*416
   6-fold quotients : {2,13,2,2}*208
   13-fold quotients : {2,6,2,2}*96
   26-fold quotients : {2,3,2,2}*48
   39-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,15)( 5,14)( 6,13)( 7,12)( 8,11)( 9,10)(16,29)(17,41)(18,40)(19,39)
(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(43,54)(44,53)
(45,52)(46,51)(47,50)(48,49)(55,68)(56,80)(57,79)(58,78)(59,77)(60,76)(61,75)
(62,74)(63,73)(64,72)(65,71)(66,70)(67,69);;
s2 := ( 3,56)( 4,55)( 5,67)( 6,66)( 7,65)( 8,64)( 9,63)(10,62)(11,61)(12,60)
(13,59)(14,58)(15,57)(16,43)(17,42)(18,54)(19,53)(20,52)(21,51)(22,50)(23,49)
(24,48)(25,47)(26,46)(27,45)(28,44)(29,69)(30,68)(31,80)(32,79)(33,78)(34,77)
(35,76)(36,75)(37,74)(38,73)(39,72)(40,71)(41,70);;
s3 := (81,82);;
s4 := (83,84);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(84)!(1,2);
s1 := Sym(84)!( 4,15)( 5,14)( 6,13)( 7,12)( 8,11)( 9,10)(16,29)(17,41)(18,40)
(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(43,54)
(44,53)(45,52)(46,51)(47,50)(48,49)(55,68)(56,80)(57,79)(58,78)(59,77)(60,76)
(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69);
s2 := Sym(84)!( 3,56)( 4,55)( 5,67)( 6,66)( 7,65)( 8,64)( 9,63)(10,62)(11,61)
(12,60)(13,59)(14,58)(15,57)(16,43)(17,42)(18,54)(19,53)(20,52)(21,51)(22,50)
(23,49)(24,48)(25,47)(26,46)(27,45)(28,44)(29,69)(30,68)(31,80)(32,79)(33,78)
(34,77)(35,76)(36,75)(37,74)(38,73)(39,72)(40,71)(41,70);
s3 := Sym(84)!(81,82);
s4 := Sym(84)!(83,84);
poly := sub<Sym(84)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope