Polytope of Type {2,13,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,13,2,2}*208
if this polytope has a name.
Group : SmallGroup(208,50)
Rank : 5
Schlafli Type : {2,13,2,2}
Number of vertices, edges, etc : 2, 13, 13, 2, 2
Order of s0s1s2s3s4 : 26
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,13,2,2,2} of size 416
   {2,13,2,2,3} of size 624
   {2,13,2,2,4} of size 832
   {2,13,2,2,5} of size 1040
   {2,13,2,2,6} of size 1248
   {2,13,2,2,7} of size 1456
   {2,13,2,2,8} of size 1664
   {2,13,2,2,9} of size 1872
Vertex Figure Of :
   {2,2,13,2,2} of size 416
   {3,2,13,2,2} of size 624
   {4,2,13,2,2} of size 832
   {5,2,13,2,2} of size 1040
   {6,2,13,2,2} of size 1248
   {7,2,13,2,2} of size 1456
   {8,2,13,2,2} of size 1664
   {9,2,13,2,2} of size 1872
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,13,2,4}*416, {2,26,2,2}*416
   3-fold covers : {2,13,2,6}*624, {2,39,2,2}*624
   4-fold covers : {2,13,2,8}*832, {2,52,2,2}*832, {2,26,2,4}*832, {2,26,4,2}*832, {4,26,2,2}*832
   5-fold covers : {2,13,2,10}*1040, {2,65,2,2}*1040
   6-fold covers : {2,13,2,12}*1248, {2,39,2,4}*1248, {2,26,2,6}*1248, {2,26,6,2}*1248, {6,26,2,2}*1248, {2,78,2,2}*1248
   7-fold covers : {2,13,2,14}*1456, {2,91,2,2}*1456
   8-fold covers : {2,13,2,16}*1664, {2,26,4,4}*1664, {2,52,4,2}*1664, {4,52,2,2}*1664, {4,26,2,4}*1664, {4,26,4,2}*1664, {2,52,2,4}*1664, {2,26,2,8}*1664, {2,26,8,2}*1664, {8,26,2,2}*1664, {2,104,2,2}*1664
   9-fold covers : {2,13,2,18}*1872, {2,117,2,2}*1872, {2,39,2,6}*1872, {2,39,6,2}*1872, {6,39,2,2}*1872
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s3 := (16,17);;
s4 := (18,19);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(19)!(1,2);
s1 := Sym(19)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s2 := Sym(19)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s3 := Sym(19)!(16,17);
s4 := Sym(19)!(18,19);
poly := sub<Sym(19)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope