include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,4,2,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,4,2,10}*1280a
if this polytope has a name.
Group : SmallGroup(1280,1035859)
Rank : 5
Schlafli Type : {8,4,2,10}
Number of vertices, edges, etc : 8, 16, 4, 10, 10
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,4,2,5}*640a, {4,4,2,10}*640, {8,2,2,10}*640
4-fold quotients : {4,4,2,5}*320, {8,2,2,5}*320, {2,4,2,10}*320, {4,2,2,10}*320
5-fold quotients : {8,4,2,2}*256a
8-fold quotients : {2,4,2,5}*160, {4,2,2,5}*160, {2,2,2,10}*160
10-fold quotients : {4,4,2,2}*128, {8,2,2,2}*128
16-fold quotients : {2,2,2,5}*80
20-fold quotients : {2,4,2,2}*64, {4,2,2,2}*64
40-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 6)( 5, 8)( 9,11)(10,12)(13,15);;
s1 := ( 1, 2)( 3, 5)( 4, 7)( 6, 9)( 8,10)(11,13)(12,14)(15,16);;
s2 := ( 2, 4)( 3, 6)(10,13)(12,15);;
s3 := (19,20)(21,22)(23,24)(25,26);;
s4 := (17,21)(18,19)(20,25)(22,23)(24,26);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(26)!( 2, 3)( 4, 6)( 5, 8)( 9,11)(10,12)(13,15);
s1 := Sym(26)!( 1, 2)( 3, 5)( 4, 7)( 6, 9)( 8,10)(11,13)(12,14)(15,16);
s2 := Sym(26)!( 2, 4)( 3, 6)(10,13)(12,15);
s3 := Sym(26)!(19,20)(21,22)(23,24)(25,26);
s4 := Sym(26)!(17,21)(18,19)(20,25)(22,23)(24,26);
poly := sub<Sym(26)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope