Polytope of Type {4,2,2,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,2,10}*320
if this polytope has a name.
Group : SmallGroup(320,1612)
Rank : 5
Schlafli Type : {4,2,2,10}
Number of vertices, edges, etc : 4, 4, 2, 10, 10
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,2,2,10,2} of size 640
   {4,2,2,10,4} of size 1280
   {4,2,2,10,5} of size 1600
   {4,2,2,10,6} of size 1920
   {4,2,2,10,3} of size 1920
   {4,2,2,10,3} of size 1920
   {4,2,2,10,5} of size 1920
   {4,2,2,10,5} of size 1920
Vertex Figure Of :
   {2,4,2,2,10} of size 640
   {3,4,2,2,10} of size 960
   {4,4,2,2,10} of size 1280
   {6,4,2,2,10} of size 1920
   {3,4,2,2,10} of size 1920
   {6,4,2,2,10} of size 1920
   {6,4,2,2,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,2,2,5}*160, {2,2,2,10}*160
   4-fold quotients : {2,2,2,5}*80
   5-fold quotients : {4,2,2,2}*64
   10-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,2,2,20}*640, {4,4,2,10}*640, {4,2,4,10}*640, {8,2,2,10}*640
   3-fold covers : {12,2,2,10}*960, {4,2,6,10}*960, {4,6,2,10}*960a, {4,2,2,30}*960
   4-fold covers : {4,4,4,10}*1280, {4,4,2,20}*1280, {4,2,4,20}*1280, {4,8,2,10}*1280a, {8,4,2,10}*1280a, {4,8,2,10}*1280b, {8,4,2,10}*1280b, {4,4,2,10}*1280, {4,2,8,10}*1280, {8,2,4,10}*1280, {8,2,2,20}*1280, {4,2,2,40}*1280, {16,2,2,10}*1280
   5-fold covers : {4,2,2,50}*1600, {20,2,2,10}*1600, {4,2,10,10}*1600a, {4,2,10,10}*1600b, {4,10,2,10}*1600
   6-fold covers : {4,4,2,30}*1920, {4,4,6,10}*1920, {4,12,2,10}*1920a, {12,4,2,10}*1920a, {4,2,4,30}*1920a, {4,2,2,60}*1920, {4,6,4,10}*1920a, {4,2,12,10}*1920, {12,2,4,10}*1920, {4,2,6,20}*1920a, {4,6,2,20}*1920a, {12,2,2,20}*1920, {8,2,2,30}*1920, {8,2,6,10}*1920, {8,6,2,10}*1920, {24,2,2,10}*1920
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := (5,6);;
s3 := ( 9,10)(11,12)(13,14)(15,16);;
s4 := ( 7,11)( 8, 9)(10,15)(12,13)(14,16);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(16)!(2,3);
s1 := Sym(16)!(1,2)(3,4);
s2 := Sym(16)!(5,6);
s3 := Sym(16)!( 9,10)(11,12)(13,14)(15,16);
s4 := Sym(16)!( 7,11)( 8, 9)(10,15)(12,13)(14,16);
poly := sub<Sym(16)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope