include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,4,40}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,4,40}*1280a
if this polytope has a name.
Group : SmallGroup(1280,1035864)
Rank : 5
Schlafli Type : {2,2,4,40}
Number of vertices, edges, etc : 2, 2, 4, 80, 40
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,4,20}*640, {2,2,2,40}*640
4-fold quotients : {2,2,2,20}*320, {2,2,4,10}*320
5-fold quotients : {2,2,4,8}*256a
8-fold quotients : {2,2,2,10}*160
10-fold quotients : {2,2,4,4}*128, {2,2,2,8}*128
16-fold quotients : {2,2,2,5}*80
20-fold quotients : {2,2,2,4}*64, {2,2,4,2}*64
40-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)
(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(71,81)(72,82)(73,83)(74,84);;
s3 := ( 5,45)( 6,49)( 7,48)( 8,47)( 9,46)(10,50)(11,54)(12,53)(13,52)(14,51)
(15,55)(16,59)(17,58)(18,57)(19,56)(20,60)(21,64)(22,63)(23,62)(24,61)(25,70)
(26,74)(27,73)(28,72)(29,71)(30,65)(31,69)(32,68)(33,67)(34,66)(35,80)(36,84)
(37,83)(38,82)(39,81)(40,75)(41,79)(42,78)(43,77)(44,76);;
s4 := ( 5, 6)( 7, 9)(10,11)(12,14)(15,16)(17,19)(20,21)(22,24)(25,31)(26,30)
(27,34)(28,33)(29,32)(35,41)(36,40)(37,44)(38,43)(39,42)(45,66)(46,65)(47,69)
(48,68)(49,67)(50,71)(51,70)(52,74)(53,73)(54,72)(55,76)(56,75)(57,79)(58,78)
(59,77)(60,81)(61,80)(62,84)(63,83)(64,82);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(84)!(1,2);
s1 := Sym(84)!(3,4);
s2 := Sym(84)!(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)
(54,64)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(71,81)(72,82)(73,83)(74,84);
s3 := Sym(84)!( 5,45)( 6,49)( 7,48)( 8,47)( 9,46)(10,50)(11,54)(12,53)(13,52)
(14,51)(15,55)(16,59)(17,58)(18,57)(19,56)(20,60)(21,64)(22,63)(23,62)(24,61)
(25,70)(26,74)(27,73)(28,72)(29,71)(30,65)(31,69)(32,68)(33,67)(34,66)(35,80)
(36,84)(37,83)(38,82)(39,81)(40,75)(41,79)(42,78)(43,77)(44,76);
s4 := Sym(84)!( 5, 6)( 7, 9)(10,11)(12,14)(15,16)(17,19)(20,21)(22,24)(25,31)
(26,30)(27,34)(28,33)(29,32)(35,41)(36,40)(37,44)(38,43)(39,42)(45,66)(46,65)
(47,69)(48,68)(49,67)(50,71)(51,70)(52,74)(53,73)(54,72)(55,76)(56,75)(57,79)
(58,78)(59,77)(60,81)(61,80)(62,84)(63,83)(64,82);
poly := sub<Sym(84)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope