include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,10,8,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,8,2,2}*1280
if this polytope has a name.
Group : SmallGroup(1280,1083341)
Rank : 6
Schlafli Type : {2,10,8,2,2}
Number of vertices, edges, etc : 2, 10, 40, 8, 2, 2
Order of s0s1s2s3s4s5 : 40
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,10,4,2,2}*640
4-fold quotients : {2,10,2,2,2}*320
5-fold quotients : {2,2,8,2,2}*256
8-fold quotients : {2,5,2,2,2}*160
10-fold quotients : {2,2,4,2,2}*128
20-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 9,12)(10,11)(14,17)(15,16)(19,22)(20,21)(24,27)(25,26)
(29,32)(30,31)(34,37)(35,36)(39,42)(40,41);;
s2 := ( 3, 4)( 5, 7)( 8, 9)(10,12)(13,19)(14,18)(15,22)(16,21)(17,20)(23,39)
(24,38)(25,42)(26,41)(27,40)(28,34)(29,33)(30,37)(31,36)(32,35);;
s3 := ( 3,23)( 4,24)( 5,25)( 6,26)( 7,27)( 8,28)( 9,29)(10,30)(11,31)(12,32)
(13,38)(14,39)(15,40)(16,41)(17,42)(18,33)(19,34)(20,35)(21,36)(22,37);;
s4 := (43,44);;
s5 := (45,46);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(46)!(1,2);
s1 := Sym(46)!( 4, 7)( 5, 6)( 9,12)(10,11)(14,17)(15,16)(19,22)(20,21)(24,27)
(25,26)(29,32)(30,31)(34,37)(35,36)(39,42)(40,41);
s2 := Sym(46)!( 3, 4)( 5, 7)( 8, 9)(10,12)(13,19)(14,18)(15,22)(16,21)(17,20)
(23,39)(24,38)(25,42)(26,41)(27,40)(28,34)(29,33)(30,37)(31,36)(32,35);
s3 := Sym(46)!( 3,23)( 4,24)( 5,25)( 6,26)( 7,27)( 8,28)( 9,29)(10,30)(11,31)
(12,32)(13,38)(14,39)(15,40)(16,41)(17,42)(18,33)(19,34)(20,35)(21,36)(22,37);
s4 := Sym(46)!(43,44);
s5 := Sym(46)!(45,46);
poly := sub<Sym(46)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope