include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,8,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,8,10,2}*1280
if this polytope has a name.
Group : SmallGroup(1280,1083341)
Rank : 6
Schlafli Type : {2,2,8,10,2}
Number of vertices, edges, etc : 2, 2, 8, 40, 10, 2
Order of s0s1s2s3s4s5 : 40
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,4,10,2}*640
4-fold quotients : {2,2,2,10,2}*320
5-fold quotients : {2,2,8,2,2}*256
8-fold quotients : {2,2,2,5,2}*160
10-fold quotients : {2,2,4,2,2}*128
20-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (15,20)(16,21)(17,22)(18,23)(19,24)(25,40)(26,41)(27,42)(28,43)(29,44)
(30,35)(31,36)(32,37)(33,38)(34,39);;
s3 := ( 5,25)( 6,29)( 7,28)( 8,27)( 9,26)(10,30)(11,34)(12,33)(13,32)(14,31)
(15,40)(16,44)(17,43)(18,42)(19,41)(20,35)(21,39)(22,38)(23,37)(24,36);;
s4 := ( 5, 6)( 7, 9)(10,11)(12,14)(15,16)(17,19)(20,21)(22,24)(25,26)(27,29)
(30,31)(32,34)(35,36)(37,39)(40,41)(42,44);;
s5 := (45,46);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s4*s3*s2*s3*s4*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(46)!(1,2);
s1 := Sym(46)!(3,4);
s2 := Sym(46)!(15,20)(16,21)(17,22)(18,23)(19,24)(25,40)(26,41)(27,42)(28,43)
(29,44)(30,35)(31,36)(32,37)(33,38)(34,39);
s3 := Sym(46)!( 5,25)( 6,29)( 7,28)( 8,27)( 9,26)(10,30)(11,34)(12,33)(13,32)
(14,31)(15,40)(16,44)(17,43)(18,42)(19,41)(20,35)(21,39)(22,38)(23,37)(24,36);
s4 := Sym(46)!( 5, 6)( 7, 9)(10,11)(12,14)(15,16)(17,19)(20,21)(22,24)(25,26)
(27,29)(30,31)(32,34)(35,36)(37,39)(40,41)(42,44);
s5 := Sym(46)!(45,46);
poly := sub<Sym(46)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s4*s3*s2*s3*s4*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope