Polytope of Type {8,20}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,20}*1280j
if this polytope has a name.
Group : SmallGroup(1280,1116427)
Rank : 3
Schlafli Type : {8,20}
Number of vertices, edges, etc : 32, 320, 80
Order of s0s1s2 : 20
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,20}*640b, {8,10}*640b
   4-fold quotients : {8,5}*320b, {4,10}*320a
   8-fold quotients : {4,5}*160
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,121)(  2,122)(  3,123)(  4,124)(  5,125)(  6,126)(  7,127)(  8,128)
(  9,114)( 10,113)( 11,116)( 12,115)( 13,118)( 14,117)( 15,120)( 16,119)
( 17,106)( 18,105)( 19,108)( 20,107)( 21,110)( 22,109)( 23,112)( 24,111)
( 25, 97)( 26, 98)( 27, 99)( 28,100)( 29,101)( 30,102)( 31,103)( 32,104)
( 33, 89)( 34, 90)( 35, 91)( 36, 92)( 37, 93)( 38, 94)( 39, 95)( 40, 96)
( 41, 82)( 42, 81)( 43, 84)( 44, 83)( 45, 86)( 46, 85)( 47, 88)( 48, 87)
( 49, 74)( 50, 73)( 51, 76)( 52, 75)( 53, 78)( 54, 77)( 55, 80)( 56, 79)
( 57, 65)( 58, 66)( 59, 67)( 60, 68)( 61, 69)( 62, 70)( 63, 71)( 64, 72);;
s1 := (  5,  7)(  6,  8)( 13, 15)( 14, 16)( 17, 26)( 18, 25)( 19, 28)( 20, 27)
( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 33, 41)( 34, 42)( 35, 43)( 36, 44)
( 37, 47)( 38, 48)( 39, 45)( 40, 46)( 49, 50)( 51, 52)( 53, 56)( 54, 55)
( 57, 58)( 59, 60)( 61, 64)( 62, 63)( 65,121)( 66,122)( 67,123)( 68,124)
( 69,127)( 70,128)( 71,125)( 72,126)( 73,113)( 74,114)( 75,115)( 76,116)
( 77,119)( 78,120)( 79,117)( 80,118)( 81, 97)( 82, 98)( 83, 99)( 84,100)
( 85,103)( 86,104)( 87,101)( 88,102)( 89,105)( 90,106)( 91,107)( 92,108)
( 93,111)( 94,112)( 95,109)( 96,110);;
s2 := (  1, 95)(  2, 96)(  3, 93)(  4, 94)(  5, 91)(  6, 92)(  7, 89)(  8, 90)
(  9, 15)( 10, 16)( 11, 13)( 12, 14)( 17, 55)( 18, 56)( 19, 53)( 20, 54)
( 21, 51)( 22, 52)( 23, 49)( 24, 50)( 25,103)( 26,104)( 27,101)( 28,102)
( 29, 99)( 30,100)( 31, 97)( 32, 98)( 33,127)( 34,128)( 35,125)( 36,126)
( 37,123)( 38,124)( 39,121)( 40,122)( 41, 48)( 42, 47)( 43, 46)( 44, 45)
( 57, 72)( 58, 71)( 59, 70)( 60, 69)( 61, 68)( 62, 67)( 63, 66)( 64, 65)
( 73,111)( 74,112)( 75,109)( 76,110)( 77,107)( 78,108)( 79,105)( 80,106)
( 81, 88)( 82, 87)( 83, 86)( 84, 85)(113,119)(114,120)(115,117)(116,118);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0, 
s0*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(128)!(  1,121)(  2,122)(  3,123)(  4,124)(  5,125)(  6,126)(  7,127)
(  8,128)(  9,114)( 10,113)( 11,116)( 12,115)( 13,118)( 14,117)( 15,120)
( 16,119)( 17,106)( 18,105)( 19,108)( 20,107)( 21,110)( 22,109)( 23,112)
( 24,111)( 25, 97)( 26, 98)( 27, 99)( 28,100)( 29,101)( 30,102)( 31,103)
( 32,104)( 33, 89)( 34, 90)( 35, 91)( 36, 92)( 37, 93)( 38, 94)( 39, 95)
( 40, 96)( 41, 82)( 42, 81)( 43, 84)( 44, 83)( 45, 86)( 46, 85)( 47, 88)
( 48, 87)( 49, 74)( 50, 73)( 51, 76)( 52, 75)( 53, 78)( 54, 77)( 55, 80)
( 56, 79)( 57, 65)( 58, 66)( 59, 67)( 60, 68)( 61, 69)( 62, 70)( 63, 71)
( 64, 72);
s1 := Sym(128)!(  5,  7)(  6,  8)( 13, 15)( 14, 16)( 17, 26)( 18, 25)( 19, 28)
( 20, 27)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 33, 41)( 34, 42)( 35, 43)
( 36, 44)( 37, 47)( 38, 48)( 39, 45)( 40, 46)( 49, 50)( 51, 52)( 53, 56)
( 54, 55)( 57, 58)( 59, 60)( 61, 64)( 62, 63)( 65,121)( 66,122)( 67,123)
( 68,124)( 69,127)( 70,128)( 71,125)( 72,126)( 73,113)( 74,114)( 75,115)
( 76,116)( 77,119)( 78,120)( 79,117)( 80,118)( 81, 97)( 82, 98)( 83, 99)
( 84,100)( 85,103)( 86,104)( 87,101)( 88,102)( 89,105)( 90,106)( 91,107)
( 92,108)( 93,111)( 94,112)( 95,109)( 96,110);
s2 := Sym(128)!(  1, 95)(  2, 96)(  3, 93)(  4, 94)(  5, 91)(  6, 92)(  7, 89)
(  8, 90)(  9, 15)( 10, 16)( 11, 13)( 12, 14)( 17, 55)( 18, 56)( 19, 53)
( 20, 54)( 21, 51)( 22, 52)( 23, 49)( 24, 50)( 25,103)( 26,104)( 27,101)
( 28,102)( 29, 99)( 30,100)( 31, 97)( 32, 98)( 33,127)( 34,128)( 35,125)
( 36,126)( 37,123)( 38,124)( 39,121)( 40,122)( 41, 48)( 42, 47)( 43, 46)
( 44, 45)( 57, 72)( 58, 71)( 59, 70)( 60, 69)( 61, 68)( 62, 67)( 63, 66)
( 64, 65)( 73,111)( 74,112)( 75,109)( 76,110)( 77,107)( 78,108)( 79,105)
( 80,106)( 81, 88)( 82, 87)( 83, 86)( 84, 85)(113,119)(114,120)(115,117)
(116,118);
poly := sub<Sym(128)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0, 
s0*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope