Polytope of Type {8,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,10}*640b
if this polytope has a name.
Group : SmallGroup(640,21461)
Rank : 3
Schlafli Type : {8,10}
Number of vertices, edges, etc : 32, 160, 40
Order of s0s1s2 : 10
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {8,10,2} of size 1280
Vertex Figure Of :
   {2,8,10} of size 1280
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,5}*320b, {4,10}*320a
   4-fold quotients : {4,5}*160
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,20}*1280j, {8,20}*1280l, {8,10}*1280c
   3-fold covers : {8,30}*1920i
Permutation Representation (GAP) :
s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)
(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)
(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192)
(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)(206,208)
(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)(222,224)
(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)(238,240)
(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)(254,256)
(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)(270,272)
(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)(286,288)
(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)(302,304)
(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)(318,320);;
s1 := (  3, 28)(  4, 27)(  5, 15)(  6, 16)(  7, 21)(  8, 22)(  9, 18)( 10, 17)
( 11, 12)( 13, 32)( 14, 31)( 23, 29)( 24, 30)( 25, 26)( 33,129)( 34,130)
( 35,156)( 36,155)( 37,143)( 38,144)( 39,149)( 40,150)( 41,146)( 42,145)
( 43,140)( 44,139)( 45,160)( 46,159)( 47,133)( 48,134)( 49,138)( 50,137)
( 51,147)( 52,148)( 53,135)( 54,136)( 55,157)( 56,158)( 57,154)( 58,153)
( 59,132)( 60,131)( 61,151)( 62,152)( 63,142)( 64,141)( 65, 97)( 66, 98)
( 67,124)( 68,123)( 69,111)( 70,112)( 71,117)( 72,118)( 73,114)( 74,113)
( 75,108)( 76,107)( 77,128)( 78,127)( 79,101)( 80,102)( 81,106)( 82,105)
( 83,115)( 84,116)( 85,103)( 86,104)( 87,125)( 88,126)( 89,122)( 90,121)
( 91,100)( 92, 99)( 93,119)( 94,120)( 95,110)( 96,109)(163,188)(164,187)
(165,175)(166,176)(167,181)(168,182)(169,178)(170,177)(171,172)(173,192)
(174,191)(183,189)(184,190)(185,186)(193,289)(194,290)(195,316)(196,315)
(197,303)(198,304)(199,309)(200,310)(201,306)(202,305)(203,300)(204,299)
(205,320)(206,319)(207,293)(208,294)(209,298)(210,297)(211,307)(212,308)
(213,295)(214,296)(215,317)(216,318)(217,314)(218,313)(219,292)(220,291)
(221,311)(222,312)(223,302)(224,301)(225,257)(226,258)(227,284)(228,283)
(229,271)(230,272)(231,277)(232,278)(233,274)(234,273)(235,268)(236,267)
(237,288)(238,287)(239,261)(240,262)(241,266)(242,265)(243,275)(244,276)
(245,263)(246,264)(247,285)(248,286)(249,282)(250,281)(251,260)(252,259)
(253,279)(254,280)(255,270)(256,269);;
s2 := (  1,269)(  2,270)(  3,271)(  4,272)(  5,268)(  6,267)(  7,266)(  8,265)
(  9,264)( 10,263)( 11,262)( 12,261)( 13,257)( 14,258)( 15,259)( 16,260)
( 17,275)( 18,276)( 19,273)( 20,274)( 21,277)( 22,278)( 23,279)( 24,280)
( 25,282)( 26,281)( 27,284)( 28,283)( 29,288)( 30,287)( 31,286)( 32,285)
( 33,237)( 34,238)( 35,239)( 36,240)( 37,236)( 38,235)( 39,234)( 40,233)
( 41,232)( 42,231)( 43,230)( 44,229)( 45,225)( 46,226)( 47,227)( 48,228)
( 49,243)( 50,244)( 51,241)( 52,242)( 53,245)( 54,246)( 55,247)( 56,248)
( 57,250)( 58,249)( 59,252)( 60,251)( 61,256)( 62,255)( 63,254)( 64,253)
( 65,205)( 66,206)( 67,207)( 68,208)( 69,204)( 70,203)( 71,202)( 72,201)
( 73,200)( 74,199)( 75,198)( 76,197)( 77,193)( 78,194)( 79,195)( 80,196)
( 81,211)( 82,212)( 83,209)( 84,210)( 85,213)( 86,214)( 87,215)( 88,216)
( 89,218)( 90,217)( 91,220)( 92,219)( 93,224)( 94,223)( 95,222)( 96,221)
( 97,173)( 98,174)( 99,175)(100,176)(101,172)(102,171)(103,170)(104,169)
(105,168)(106,167)(107,166)(108,165)(109,161)(110,162)(111,163)(112,164)
(113,179)(114,180)(115,177)(116,178)(117,181)(118,182)(119,183)(120,184)
(121,186)(122,185)(123,188)(124,187)(125,192)(126,191)(127,190)(128,189)
(129,301)(130,302)(131,303)(132,304)(133,300)(134,299)(135,298)(136,297)
(137,296)(138,295)(139,294)(140,293)(141,289)(142,290)(143,291)(144,292)
(145,307)(146,308)(147,305)(148,306)(149,309)(150,310)(151,311)(152,312)
(153,314)(154,313)(155,316)(156,315)(157,320)(158,319)(159,318)(160,317);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0, 
s0*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(320)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)
(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)
(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)
(190,192)(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)
(206,208)(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)
(222,224)(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)
(238,240)(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)
(254,256)(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)
(270,272)(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)
(286,288)(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)
(302,304)(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)
(318,320);
s1 := Sym(320)!(  3, 28)(  4, 27)(  5, 15)(  6, 16)(  7, 21)(  8, 22)(  9, 18)
( 10, 17)( 11, 12)( 13, 32)( 14, 31)( 23, 29)( 24, 30)( 25, 26)( 33,129)
( 34,130)( 35,156)( 36,155)( 37,143)( 38,144)( 39,149)( 40,150)( 41,146)
( 42,145)( 43,140)( 44,139)( 45,160)( 46,159)( 47,133)( 48,134)( 49,138)
( 50,137)( 51,147)( 52,148)( 53,135)( 54,136)( 55,157)( 56,158)( 57,154)
( 58,153)( 59,132)( 60,131)( 61,151)( 62,152)( 63,142)( 64,141)( 65, 97)
( 66, 98)( 67,124)( 68,123)( 69,111)( 70,112)( 71,117)( 72,118)( 73,114)
( 74,113)( 75,108)( 76,107)( 77,128)( 78,127)( 79,101)( 80,102)( 81,106)
( 82,105)( 83,115)( 84,116)( 85,103)( 86,104)( 87,125)( 88,126)( 89,122)
( 90,121)( 91,100)( 92, 99)( 93,119)( 94,120)( 95,110)( 96,109)(163,188)
(164,187)(165,175)(166,176)(167,181)(168,182)(169,178)(170,177)(171,172)
(173,192)(174,191)(183,189)(184,190)(185,186)(193,289)(194,290)(195,316)
(196,315)(197,303)(198,304)(199,309)(200,310)(201,306)(202,305)(203,300)
(204,299)(205,320)(206,319)(207,293)(208,294)(209,298)(210,297)(211,307)
(212,308)(213,295)(214,296)(215,317)(216,318)(217,314)(218,313)(219,292)
(220,291)(221,311)(222,312)(223,302)(224,301)(225,257)(226,258)(227,284)
(228,283)(229,271)(230,272)(231,277)(232,278)(233,274)(234,273)(235,268)
(236,267)(237,288)(238,287)(239,261)(240,262)(241,266)(242,265)(243,275)
(244,276)(245,263)(246,264)(247,285)(248,286)(249,282)(250,281)(251,260)
(252,259)(253,279)(254,280)(255,270)(256,269);
s2 := Sym(320)!(  1,269)(  2,270)(  3,271)(  4,272)(  5,268)(  6,267)(  7,266)
(  8,265)(  9,264)( 10,263)( 11,262)( 12,261)( 13,257)( 14,258)( 15,259)
( 16,260)( 17,275)( 18,276)( 19,273)( 20,274)( 21,277)( 22,278)( 23,279)
( 24,280)( 25,282)( 26,281)( 27,284)( 28,283)( 29,288)( 30,287)( 31,286)
( 32,285)( 33,237)( 34,238)( 35,239)( 36,240)( 37,236)( 38,235)( 39,234)
( 40,233)( 41,232)( 42,231)( 43,230)( 44,229)( 45,225)( 46,226)( 47,227)
( 48,228)( 49,243)( 50,244)( 51,241)( 52,242)( 53,245)( 54,246)( 55,247)
( 56,248)( 57,250)( 58,249)( 59,252)( 60,251)( 61,256)( 62,255)( 63,254)
( 64,253)( 65,205)( 66,206)( 67,207)( 68,208)( 69,204)( 70,203)( 71,202)
( 72,201)( 73,200)( 74,199)( 75,198)( 76,197)( 77,193)( 78,194)( 79,195)
( 80,196)( 81,211)( 82,212)( 83,209)( 84,210)( 85,213)( 86,214)( 87,215)
( 88,216)( 89,218)( 90,217)( 91,220)( 92,219)( 93,224)( 94,223)( 95,222)
( 96,221)( 97,173)( 98,174)( 99,175)(100,176)(101,172)(102,171)(103,170)
(104,169)(105,168)(106,167)(107,166)(108,165)(109,161)(110,162)(111,163)
(112,164)(113,179)(114,180)(115,177)(116,178)(117,181)(118,182)(119,183)
(120,184)(121,186)(122,185)(123,188)(124,187)(125,192)(126,191)(127,190)
(128,189)(129,301)(130,302)(131,303)(132,304)(133,300)(134,299)(135,298)
(136,297)(137,296)(138,295)(139,294)(140,293)(141,289)(142,290)(143,291)
(144,292)(145,307)(146,308)(147,305)(148,306)(149,309)(150,310)(151,311)
(152,312)(153,314)(154,313)(155,316)(156,315)(157,320)(158,319)(159,318)
(160,317);
poly := sub<Sym(320)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0, 
s0*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope