Polytope of Type {40,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {40,4}*1280f
if this polytope has a name.
Group : SmallGroup(1280,1116431)
Rank : 3
Schlafli Type : {40,4}
Number of vertices, edges, etc : 160, 320, 16
Order of s0s1s2 : 40
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {20,4}*640b
   4-fold quotients : {10,4}*320a
   8-fold quotients : {5,4}*160
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  7)(  6,  8)( 11, 12)( 13, 15)( 14, 16)( 17, 25)( 18, 26)
( 19, 28)( 20, 27)( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33, 41)( 34, 42)
( 35, 44)( 36, 43)( 37, 47)( 38, 48)( 39, 45)( 40, 46)( 51, 52)( 53, 55)
( 54, 56)( 59, 60)( 61, 63)( 62, 64)( 65,121)( 66,122)( 67,124)( 68,123)
( 69,127)( 70,128)( 71,125)( 72,126)( 73,113)( 74,114)( 75,116)( 76,115)
( 77,119)( 78,120)( 79,117)( 80,118)( 81, 97)( 82, 98)( 83,100)( 84, 99)
( 85,103)( 86,104)( 87,101)( 88,102)( 89,105)( 90,106)( 91,108)( 92,107)
( 93,111)( 94,112)( 95,109)( 96,110);;
s1 := (  1,  7)(  2,  8)(  3,  5)(  4,  6)(  9,103)( 10,104)( 11,101)( 12,102)
( 13, 99)( 14,100)( 15, 97)( 16, 98)( 17, 63)( 18, 64)( 19, 61)( 20, 62)
( 21, 59)( 22, 60)( 23, 57)( 24, 58)( 25, 95)( 26, 96)( 27, 93)( 28, 94)
( 29, 91)( 30, 92)( 31, 89)( 32, 90)( 33, 79)( 34, 80)( 35, 77)( 36, 78)
( 37, 75)( 38, 76)( 39, 73)( 40, 74)( 41, 47)( 42, 48)( 43, 45)( 44, 46)
( 49,119)( 50,120)( 51,117)( 52,118)( 53,115)( 54,116)( 55,113)( 56,114)
( 65, 71)( 66, 72)( 67, 69)( 68, 70)( 81,127)( 82,128)( 83,125)( 84,126)
( 85,123)( 86,124)( 87,121)( 88,122)(105,111)(106,112)(107,109)(108,110);;
s2 := (  1, 58)(  2, 57)(  3, 60)(  4, 59)(  5, 62)(  6, 61)(  7, 64)(  8, 63)
(  9, 50)( 10, 49)( 11, 52)( 12, 51)( 13, 54)( 14, 53)( 15, 56)( 16, 55)
( 17, 42)( 18, 41)( 19, 44)( 20, 43)( 21, 46)( 22, 45)( 23, 48)( 24, 47)
( 25, 34)( 26, 33)( 27, 36)( 28, 35)( 29, 38)( 30, 37)( 31, 40)( 32, 39)
( 65,122)( 66,121)( 67,124)( 68,123)( 69,126)( 70,125)( 71,128)( 72,127)
( 73,114)( 74,113)( 75,116)( 76,115)( 77,118)( 78,117)( 79,120)( 80,119)
( 81,106)( 82,105)( 83,108)( 84,107)( 85,110)( 86,109)( 87,112)( 88,111)
( 89, 98)( 90, 97)( 91,100)( 92, 99)( 93,102)( 94,101)( 95,104)( 96,103);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(128)!(  3,  4)(  5,  7)(  6,  8)( 11, 12)( 13, 15)( 14, 16)( 17, 25)
( 18, 26)( 19, 28)( 20, 27)( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33, 41)
( 34, 42)( 35, 44)( 36, 43)( 37, 47)( 38, 48)( 39, 45)( 40, 46)( 51, 52)
( 53, 55)( 54, 56)( 59, 60)( 61, 63)( 62, 64)( 65,121)( 66,122)( 67,124)
( 68,123)( 69,127)( 70,128)( 71,125)( 72,126)( 73,113)( 74,114)( 75,116)
( 76,115)( 77,119)( 78,120)( 79,117)( 80,118)( 81, 97)( 82, 98)( 83,100)
( 84, 99)( 85,103)( 86,104)( 87,101)( 88,102)( 89,105)( 90,106)( 91,108)
( 92,107)( 93,111)( 94,112)( 95,109)( 96,110);
s1 := Sym(128)!(  1,  7)(  2,  8)(  3,  5)(  4,  6)(  9,103)( 10,104)( 11,101)
( 12,102)( 13, 99)( 14,100)( 15, 97)( 16, 98)( 17, 63)( 18, 64)( 19, 61)
( 20, 62)( 21, 59)( 22, 60)( 23, 57)( 24, 58)( 25, 95)( 26, 96)( 27, 93)
( 28, 94)( 29, 91)( 30, 92)( 31, 89)( 32, 90)( 33, 79)( 34, 80)( 35, 77)
( 36, 78)( 37, 75)( 38, 76)( 39, 73)( 40, 74)( 41, 47)( 42, 48)( 43, 45)
( 44, 46)( 49,119)( 50,120)( 51,117)( 52,118)( 53,115)( 54,116)( 55,113)
( 56,114)( 65, 71)( 66, 72)( 67, 69)( 68, 70)( 81,127)( 82,128)( 83,125)
( 84,126)( 85,123)( 86,124)( 87,121)( 88,122)(105,111)(106,112)(107,109)
(108,110);
s2 := Sym(128)!(  1, 58)(  2, 57)(  3, 60)(  4, 59)(  5, 62)(  6, 61)(  7, 64)
(  8, 63)(  9, 50)( 10, 49)( 11, 52)( 12, 51)( 13, 54)( 14, 53)( 15, 56)
( 16, 55)( 17, 42)( 18, 41)( 19, 44)( 20, 43)( 21, 46)( 22, 45)( 23, 48)
( 24, 47)( 25, 34)( 26, 33)( 27, 36)( 28, 35)( 29, 38)( 30, 37)( 31, 40)
( 32, 39)( 65,122)( 66,121)( 67,124)( 68,123)( 69,126)( 70,125)( 71,128)
( 72,127)( 73,114)( 74,113)( 75,116)( 76,115)( 77,118)( 78,117)( 79,120)
( 80,119)( 81,106)( 82,105)( 83,108)( 84,107)( 85,110)( 86,109)( 87,112)
( 88,111)( 89, 98)( 90, 97)( 91,100)( 92, 99)( 93,102)( 94,101)( 95,104)
( 96,103);
poly := sub<Sym(128)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0 >; 
 
References : None.
to this polytope