Polytope of Type {4,20,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,20,2}*1280b
if this polytope has a name.
Group : SmallGroup(1280,1116447)
Rank : 4
Schlafli Type : {4,20,2}
Number of vertices, edges, etc : 16, 160, 80, 2
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,10,2}*640a
   4-fold quotients : {4,5,2}*320
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  9)(  2, 10)(  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 15)(  8, 16)
( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)( 24, 32)
( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)( 40, 48)
( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)( 56, 64)
( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)( 72, 80)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)
( 97,105)( 98,106)( 99,107)(100,108)(101,109)(102,110)(103,111)(104,112)
(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)
(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144)
(145,153)(146,154)(147,155)(148,156)(149,157)(150,158)(151,159)(152,160)
(161,169)(162,170)(163,171)(164,172)(165,173)(166,174)(167,175)(168,176)
(177,185)(178,186)(179,187)(180,188)(181,189)(182,190)(183,191)(184,192)
(193,201)(194,202)(195,203)(196,204)(197,205)(198,206)(199,207)(200,208)
(209,217)(210,218)(211,219)(212,220)(213,221)(214,222)(215,223)(216,224)
(225,233)(226,234)(227,235)(228,236)(229,237)(230,238)(231,239)(232,240)
(241,249)(242,250)(243,251)(244,252)(245,253)(246,254)(247,255)(248,256)
(257,265)(258,266)(259,267)(260,268)(261,269)(262,270)(263,271)(264,272)
(273,281)(274,282)(275,283)(276,284)(277,285)(278,286)(279,287)(280,288)
(289,297)(290,298)(291,299)(292,300)(293,301)(294,302)(295,303)(296,304)
(305,313)(306,314)(307,315)(308,316)(309,317)(310,318)(311,319)(312,320);;
s1 := (  2,  9)(  3, 16)(  4,  8)(  6, 13)(  7, 12)( 11, 15)( 17, 65)( 18, 73)
( 19, 80)( 20, 72)( 21, 69)( 22, 77)( 23, 76)( 24, 68)( 25, 66)( 26, 74)
( 27, 79)( 28, 71)( 29, 70)( 30, 78)( 31, 75)( 32, 67)( 33, 49)( 34, 57)
( 35, 64)( 36, 56)( 37, 53)( 38, 61)( 39, 60)( 40, 52)( 41, 50)( 42, 58)
( 43, 63)( 44, 55)( 45, 54)( 46, 62)( 47, 59)( 48, 51)( 82, 89)( 83, 96)
( 84, 88)( 86, 93)( 87, 92)( 91, 95)( 97,145)( 98,153)( 99,160)(100,152)
(101,149)(102,157)(103,156)(104,148)(105,146)(106,154)(107,159)(108,151)
(109,150)(110,158)(111,155)(112,147)(113,129)(114,137)(115,144)(116,136)
(117,133)(118,141)(119,140)(120,132)(121,130)(122,138)(123,143)(124,135)
(125,134)(126,142)(127,139)(128,131)(161,241)(162,249)(163,256)(164,248)
(165,245)(166,253)(167,252)(168,244)(169,242)(170,250)(171,255)(172,247)
(173,246)(174,254)(175,251)(176,243)(177,305)(178,313)(179,320)(180,312)
(181,309)(182,317)(183,316)(184,308)(185,306)(186,314)(187,319)(188,311)
(189,310)(190,318)(191,315)(192,307)(193,289)(194,297)(195,304)(196,296)
(197,293)(198,301)(199,300)(200,292)(201,290)(202,298)(203,303)(204,295)
(205,294)(206,302)(207,299)(208,291)(209,273)(210,281)(211,288)(212,280)
(213,277)(214,285)(215,284)(216,276)(217,274)(218,282)(219,287)(220,279)
(221,278)(222,286)(223,283)(224,275)(225,257)(226,265)(227,272)(228,264)
(229,261)(230,269)(231,268)(232,260)(233,258)(234,266)(235,271)(236,263)
(237,262)(238,270)(239,267)(240,259);;
s2 := (  1,177)(  2,187)(  3,186)(  4,180)(  5,189)(  6,183)(  7,182)(  8,192)
(  9,185)( 10,179)( 11,178)( 12,188)( 13,181)( 14,191)( 15,190)( 16,184)
( 17,161)( 18,171)( 19,170)( 20,164)( 21,173)( 22,167)( 23,166)( 24,176)
( 25,169)( 26,163)( 27,162)( 28,172)( 29,165)( 30,175)( 31,174)( 32,168)
( 33,225)( 34,235)( 35,234)( 36,228)( 37,237)( 38,231)( 39,230)( 40,240)
( 41,233)( 42,227)( 43,226)( 44,236)( 45,229)( 46,239)( 47,238)( 48,232)
( 49,209)( 50,219)( 51,218)( 52,212)( 53,221)( 54,215)( 55,214)( 56,224)
( 57,217)( 58,211)( 59,210)( 60,220)( 61,213)( 62,223)( 63,222)( 64,216)
( 65,193)( 66,203)( 67,202)( 68,196)( 69,205)( 70,199)( 71,198)( 72,208)
( 73,201)( 74,195)( 75,194)( 76,204)( 77,197)( 78,207)( 79,206)( 80,200)
( 81,257)( 82,267)( 83,266)( 84,260)( 85,269)( 86,263)( 87,262)( 88,272)
( 89,265)( 90,259)( 91,258)( 92,268)( 93,261)( 94,271)( 95,270)( 96,264)
( 97,241)( 98,251)( 99,250)(100,244)(101,253)(102,247)(103,246)(104,256)
(105,249)(106,243)(107,242)(108,252)(109,245)(110,255)(111,254)(112,248)
(113,305)(114,315)(115,314)(116,308)(117,317)(118,311)(119,310)(120,320)
(121,313)(122,307)(123,306)(124,316)(125,309)(126,319)(127,318)(128,312)
(129,289)(130,299)(131,298)(132,292)(133,301)(134,295)(135,294)(136,304)
(137,297)(138,291)(139,290)(140,300)(141,293)(142,303)(143,302)(144,296)
(145,273)(146,283)(147,282)(148,276)(149,285)(150,279)(151,278)(152,288)
(153,281)(154,275)(155,274)(156,284)(157,277)(158,287)(159,286)(160,280);;
s3 := (321,322);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(322)!(  1,  9)(  2, 10)(  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 15)
(  8, 16)( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)
( 24, 32)( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)
( 40, 48)( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)
( 56, 64)( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)
( 72, 80)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)
( 88, 96)( 97,105)( 98,106)( 99,107)(100,108)(101,109)(102,110)(103,111)
(104,112)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)
(120,128)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)
(136,144)(145,153)(146,154)(147,155)(148,156)(149,157)(150,158)(151,159)
(152,160)(161,169)(162,170)(163,171)(164,172)(165,173)(166,174)(167,175)
(168,176)(177,185)(178,186)(179,187)(180,188)(181,189)(182,190)(183,191)
(184,192)(193,201)(194,202)(195,203)(196,204)(197,205)(198,206)(199,207)
(200,208)(209,217)(210,218)(211,219)(212,220)(213,221)(214,222)(215,223)
(216,224)(225,233)(226,234)(227,235)(228,236)(229,237)(230,238)(231,239)
(232,240)(241,249)(242,250)(243,251)(244,252)(245,253)(246,254)(247,255)
(248,256)(257,265)(258,266)(259,267)(260,268)(261,269)(262,270)(263,271)
(264,272)(273,281)(274,282)(275,283)(276,284)(277,285)(278,286)(279,287)
(280,288)(289,297)(290,298)(291,299)(292,300)(293,301)(294,302)(295,303)
(296,304)(305,313)(306,314)(307,315)(308,316)(309,317)(310,318)(311,319)
(312,320);
s1 := Sym(322)!(  2,  9)(  3, 16)(  4,  8)(  6, 13)(  7, 12)( 11, 15)( 17, 65)
( 18, 73)( 19, 80)( 20, 72)( 21, 69)( 22, 77)( 23, 76)( 24, 68)( 25, 66)
( 26, 74)( 27, 79)( 28, 71)( 29, 70)( 30, 78)( 31, 75)( 32, 67)( 33, 49)
( 34, 57)( 35, 64)( 36, 56)( 37, 53)( 38, 61)( 39, 60)( 40, 52)( 41, 50)
( 42, 58)( 43, 63)( 44, 55)( 45, 54)( 46, 62)( 47, 59)( 48, 51)( 82, 89)
( 83, 96)( 84, 88)( 86, 93)( 87, 92)( 91, 95)( 97,145)( 98,153)( 99,160)
(100,152)(101,149)(102,157)(103,156)(104,148)(105,146)(106,154)(107,159)
(108,151)(109,150)(110,158)(111,155)(112,147)(113,129)(114,137)(115,144)
(116,136)(117,133)(118,141)(119,140)(120,132)(121,130)(122,138)(123,143)
(124,135)(125,134)(126,142)(127,139)(128,131)(161,241)(162,249)(163,256)
(164,248)(165,245)(166,253)(167,252)(168,244)(169,242)(170,250)(171,255)
(172,247)(173,246)(174,254)(175,251)(176,243)(177,305)(178,313)(179,320)
(180,312)(181,309)(182,317)(183,316)(184,308)(185,306)(186,314)(187,319)
(188,311)(189,310)(190,318)(191,315)(192,307)(193,289)(194,297)(195,304)
(196,296)(197,293)(198,301)(199,300)(200,292)(201,290)(202,298)(203,303)
(204,295)(205,294)(206,302)(207,299)(208,291)(209,273)(210,281)(211,288)
(212,280)(213,277)(214,285)(215,284)(216,276)(217,274)(218,282)(219,287)
(220,279)(221,278)(222,286)(223,283)(224,275)(225,257)(226,265)(227,272)
(228,264)(229,261)(230,269)(231,268)(232,260)(233,258)(234,266)(235,271)
(236,263)(237,262)(238,270)(239,267)(240,259);
s2 := Sym(322)!(  1,177)(  2,187)(  3,186)(  4,180)(  5,189)(  6,183)(  7,182)
(  8,192)(  9,185)( 10,179)( 11,178)( 12,188)( 13,181)( 14,191)( 15,190)
( 16,184)( 17,161)( 18,171)( 19,170)( 20,164)( 21,173)( 22,167)( 23,166)
( 24,176)( 25,169)( 26,163)( 27,162)( 28,172)( 29,165)( 30,175)( 31,174)
( 32,168)( 33,225)( 34,235)( 35,234)( 36,228)( 37,237)( 38,231)( 39,230)
( 40,240)( 41,233)( 42,227)( 43,226)( 44,236)( 45,229)( 46,239)( 47,238)
( 48,232)( 49,209)( 50,219)( 51,218)( 52,212)( 53,221)( 54,215)( 55,214)
( 56,224)( 57,217)( 58,211)( 59,210)( 60,220)( 61,213)( 62,223)( 63,222)
( 64,216)( 65,193)( 66,203)( 67,202)( 68,196)( 69,205)( 70,199)( 71,198)
( 72,208)( 73,201)( 74,195)( 75,194)( 76,204)( 77,197)( 78,207)( 79,206)
( 80,200)( 81,257)( 82,267)( 83,266)( 84,260)( 85,269)( 86,263)( 87,262)
( 88,272)( 89,265)( 90,259)( 91,258)( 92,268)( 93,261)( 94,271)( 95,270)
( 96,264)( 97,241)( 98,251)( 99,250)(100,244)(101,253)(102,247)(103,246)
(104,256)(105,249)(106,243)(107,242)(108,252)(109,245)(110,255)(111,254)
(112,248)(113,305)(114,315)(115,314)(116,308)(117,317)(118,311)(119,310)
(120,320)(121,313)(122,307)(123,306)(124,316)(125,309)(126,319)(127,318)
(128,312)(129,289)(130,299)(131,298)(132,292)(133,301)(134,295)(135,294)
(136,304)(137,297)(138,291)(139,290)(140,300)(141,293)(142,303)(143,302)
(144,296)(145,273)(146,283)(147,282)(148,276)(149,285)(150,279)(151,278)
(152,288)(153,281)(154,275)(155,274)(156,284)(157,277)(158,287)(159,286)
(160,280);
s3 := Sym(322)!(321,322);
poly := sub<Sym(322)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope