Polytope of Type {2,20,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,20,4}*1280b
if this polytope has a name.
Group : SmallGroup(1280,1116447)
Rank : 4
Schlafli Type : {2,20,4}
Number of vertices, edges, etc : 2, 80, 160, 16
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,10,4}*640a
   4-fold quotients : {2,5,4}*320
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 11)(  5, 18)(  6, 10)(  8, 15)(  9, 14)( 13, 17)( 19, 67)( 20, 75)
( 21, 82)( 22, 74)( 23, 71)( 24, 79)( 25, 78)( 26, 70)( 27, 68)( 28, 76)
( 29, 81)( 30, 73)( 31, 72)( 32, 80)( 33, 77)( 34, 69)( 35, 51)( 36, 59)
( 37, 66)( 38, 58)( 39, 55)( 40, 63)( 41, 62)( 42, 54)( 43, 52)( 44, 60)
( 45, 65)( 46, 57)( 47, 56)( 48, 64)( 49, 61)( 50, 53)( 84, 91)( 85, 98)
( 86, 90)( 88, 95)( 89, 94)( 93, 97)( 99,147)(100,155)(101,162)(102,154)
(103,151)(104,159)(105,158)(106,150)(107,148)(108,156)(109,161)(110,153)
(111,152)(112,160)(113,157)(114,149)(115,131)(116,139)(117,146)(118,138)
(119,135)(120,143)(121,142)(122,134)(123,132)(124,140)(125,145)(126,137)
(127,136)(128,144)(129,141)(130,133)(163,243)(164,251)(165,258)(166,250)
(167,247)(168,255)(169,254)(170,246)(171,244)(172,252)(173,257)(174,249)
(175,248)(176,256)(177,253)(178,245)(179,307)(180,315)(181,322)(182,314)
(183,311)(184,319)(185,318)(186,310)(187,308)(188,316)(189,321)(190,313)
(191,312)(192,320)(193,317)(194,309)(195,291)(196,299)(197,306)(198,298)
(199,295)(200,303)(201,302)(202,294)(203,292)(204,300)(205,305)(206,297)
(207,296)(208,304)(209,301)(210,293)(211,275)(212,283)(213,290)(214,282)
(215,279)(216,287)(217,286)(218,278)(219,276)(220,284)(221,289)(222,281)
(223,280)(224,288)(225,285)(226,277)(227,259)(228,267)(229,274)(230,266)
(231,263)(232,271)(233,270)(234,262)(235,260)(236,268)(237,273)(238,265)
(239,264)(240,272)(241,269)(242,261);;
s2 := (  3,179)(  4,189)(  5,188)(  6,182)(  7,191)(  8,185)(  9,184)( 10,194)
( 11,187)( 12,181)( 13,180)( 14,190)( 15,183)( 16,193)( 17,192)( 18,186)
( 19,163)( 20,173)( 21,172)( 22,166)( 23,175)( 24,169)( 25,168)( 26,178)
( 27,171)( 28,165)( 29,164)( 30,174)( 31,167)( 32,177)( 33,176)( 34,170)
( 35,227)( 36,237)( 37,236)( 38,230)( 39,239)( 40,233)( 41,232)( 42,242)
( 43,235)( 44,229)( 45,228)( 46,238)( 47,231)( 48,241)( 49,240)( 50,234)
( 51,211)( 52,221)( 53,220)( 54,214)( 55,223)( 56,217)( 57,216)( 58,226)
( 59,219)( 60,213)( 61,212)( 62,222)( 63,215)( 64,225)( 65,224)( 66,218)
( 67,195)( 68,205)( 69,204)( 70,198)( 71,207)( 72,201)( 73,200)( 74,210)
( 75,203)( 76,197)( 77,196)( 78,206)( 79,199)( 80,209)( 81,208)( 82,202)
( 83,259)( 84,269)( 85,268)( 86,262)( 87,271)( 88,265)( 89,264)( 90,274)
( 91,267)( 92,261)( 93,260)( 94,270)( 95,263)( 96,273)( 97,272)( 98,266)
( 99,243)(100,253)(101,252)(102,246)(103,255)(104,249)(105,248)(106,258)
(107,251)(108,245)(109,244)(110,254)(111,247)(112,257)(113,256)(114,250)
(115,307)(116,317)(117,316)(118,310)(119,319)(120,313)(121,312)(122,322)
(123,315)(124,309)(125,308)(126,318)(127,311)(128,321)(129,320)(130,314)
(131,291)(132,301)(133,300)(134,294)(135,303)(136,297)(137,296)(138,306)
(139,299)(140,293)(141,292)(142,302)(143,295)(144,305)(145,304)(146,298)
(147,275)(148,285)(149,284)(150,278)(151,287)(152,281)(153,280)(154,290)
(155,283)(156,277)(157,276)(158,286)(159,279)(160,289)(161,288)(162,282);;
s3 := (  3,  7)(  4,  8)(  5,  9)(  6, 10)( 11, 15)( 12, 16)( 13, 17)( 14, 18)
( 19, 23)( 20, 24)( 21, 25)( 22, 26)( 27, 31)( 28, 32)( 29, 33)( 30, 34)
( 35, 39)( 36, 40)( 37, 41)( 38, 42)( 43, 47)( 44, 48)( 45, 49)( 46, 50)
( 51, 55)( 52, 56)( 53, 57)( 54, 58)( 59, 63)( 60, 64)( 61, 65)( 62, 66)
( 67, 71)( 68, 72)( 69, 73)( 70, 74)( 75, 79)( 76, 80)( 77, 81)( 78, 82)
( 83, 87)( 84, 88)( 85, 89)( 86, 90)( 91, 95)( 92, 96)( 93, 97)( 94, 98)
( 99,103)(100,104)(101,105)(102,106)(107,111)(108,112)(109,113)(110,114)
(115,119)(116,120)(117,121)(118,122)(123,127)(124,128)(125,129)(126,130)
(131,135)(132,136)(133,137)(134,138)(139,143)(140,144)(141,145)(142,146)
(147,151)(148,152)(149,153)(150,154)(155,159)(156,160)(157,161)(158,162)
(163,167)(164,168)(165,169)(166,170)(171,175)(172,176)(173,177)(174,178)
(179,183)(180,184)(181,185)(182,186)(187,191)(188,192)(189,193)(190,194)
(195,199)(196,200)(197,201)(198,202)(203,207)(204,208)(205,209)(206,210)
(211,215)(212,216)(213,217)(214,218)(219,223)(220,224)(221,225)(222,226)
(227,231)(228,232)(229,233)(230,234)(235,239)(236,240)(237,241)(238,242)
(243,247)(244,248)(245,249)(246,250)(251,255)(252,256)(253,257)(254,258)
(259,263)(260,264)(261,265)(262,266)(267,271)(268,272)(269,273)(270,274)
(275,279)(276,280)(277,281)(278,282)(283,287)(284,288)(285,289)(286,290)
(291,295)(292,296)(293,297)(294,298)(299,303)(300,304)(301,305)(302,306)
(307,311)(308,312)(309,313)(310,314)(315,319)(316,320)(317,321)(318,322);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(322)!(1,2);
s1 := Sym(322)!(  4, 11)(  5, 18)(  6, 10)(  8, 15)(  9, 14)( 13, 17)( 19, 67)
( 20, 75)( 21, 82)( 22, 74)( 23, 71)( 24, 79)( 25, 78)( 26, 70)( 27, 68)
( 28, 76)( 29, 81)( 30, 73)( 31, 72)( 32, 80)( 33, 77)( 34, 69)( 35, 51)
( 36, 59)( 37, 66)( 38, 58)( 39, 55)( 40, 63)( 41, 62)( 42, 54)( 43, 52)
( 44, 60)( 45, 65)( 46, 57)( 47, 56)( 48, 64)( 49, 61)( 50, 53)( 84, 91)
( 85, 98)( 86, 90)( 88, 95)( 89, 94)( 93, 97)( 99,147)(100,155)(101,162)
(102,154)(103,151)(104,159)(105,158)(106,150)(107,148)(108,156)(109,161)
(110,153)(111,152)(112,160)(113,157)(114,149)(115,131)(116,139)(117,146)
(118,138)(119,135)(120,143)(121,142)(122,134)(123,132)(124,140)(125,145)
(126,137)(127,136)(128,144)(129,141)(130,133)(163,243)(164,251)(165,258)
(166,250)(167,247)(168,255)(169,254)(170,246)(171,244)(172,252)(173,257)
(174,249)(175,248)(176,256)(177,253)(178,245)(179,307)(180,315)(181,322)
(182,314)(183,311)(184,319)(185,318)(186,310)(187,308)(188,316)(189,321)
(190,313)(191,312)(192,320)(193,317)(194,309)(195,291)(196,299)(197,306)
(198,298)(199,295)(200,303)(201,302)(202,294)(203,292)(204,300)(205,305)
(206,297)(207,296)(208,304)(209,301)(210,293)(211,275)(212,283)(213,290)
(214,282)(215,279)(216,287)(217,286)(218,278)(219,276)(220,284)(221,289)
(222,281)(223,280)(224,288)(225,285)(226,277)(227,259)(228,267)(229,274)
(230,266)(231,263)(232,271)(233,270)(234,262)(235,260)(236,268)(237,273)
(238,265)(239,264)(240,272)(241,269)(242,261);
s2 := Sym(322)!(  3,179)(  4,189)(  5,188)(  6,182)(  7,191)(  8,185)(  9,184)
( 10,194)( 11,187)( 12,181)( 13,180)( 14,190)( 15,183)( 16,193)( 17,192)
( 18,186)( 19,163)( 20,173)( 21,172)( 22,166)( 23,175)( 24,169)( 25,168)
( 26,178)( 27,171)( 28,165)( 29,164)( 30,174)( 31,167)( 32,177)( 33,176)
( 34,170)( 35,227)( 36,237)( 37,236)( 38,230)( 39,239)( 40,233)( 41,232)
( 42,242)( 43,235)( 44,229)( 45,228)( 46,238)( 47,231)( 48,241)( 49,240)
( 50,234)( 51,211)( 52,221)( 53,220)( 54,214)( 55,223)( 56,217)( 57,216)
( 58,226)( 59,219)( 60,213)( 61,212)( 62,222)( 63,215)( 64,225)( 65,224)
( 66,218)( 67,195)( 68,205)( 69,204)( 70,198)( 71,207)( 72,201)( 73,200)
( 74,210)( 75,203)( 76,197)( 77,196)( 78,206)( 79,199)( 80,209)( 81,208)
( 82,202)( 83,259)( 84,269)( 85,268)( 86,262)( 87,271)( 88,265)( 89,264)
( 90,274)( 91,267)( 92,261)( 93,260)( 94,270)( 95,263)( 96,273)( 97,272)
( 98,266)( 99,243)(100,253)(101,252)(102,246)(103,255)(104,249)(105,248)
(106,258)(107,251)(108,245)(109,244)(110,254)(111,247)(112,257)(113,256)
(114,250)(115,307)(116,317)(117,316)(118,310)(119,319)(120,313)(121,312)
(122,322)(123,315)(124,309)(125,308)(126,318)(127,311)(128,321)(129,320)
(130,314)(131,291)(132,301)(133,300)(134,294)(135,303)(136,297)(137,296)
(138,306)(139,299)(140,293)(141,292)(142,302)(143,295)(144,305)(145,304)
(146,298)(147,275)(148,285)(149,284)(150,278)(151,287)(152,281)(153,280)
(154,290)(155,283)(156,277)(157,276)(158,286)(159,279)(160,289)(161,288)
(162,282);
s3 := Sym(322)!(  3,  7)(  4,  8)(  5,  9)(  6, 10)( 11, 15)( 12, 16)( 13, 17)
( 14, 18)( 19, 23)( 20, 24)( 21, 25)( 22, 26)( 27, 31)( 28, 32)( 29, 33)
( 30, 34)( 35, 39)( 36, 40)( 37, 41)( 38, 42)( 43, 47)( 44, 48)( 45, 49)
( 46, 50)( 51, 55)( 52, 56)( 53, 57)( 54, 58)( 59, 63)( 60, 64)( 61, 65)
( 62, 66)( 67, 71)( 68, 72)( 69, 73)( 70, 74)( 75, 79)( 76, 80)( 77, 81)
( 78, 82)( 83, 87)( 84, 88)( 85, 89)( 86, 90)( 91, 95)( 92, 96)( 93, 97)
( 94, 98)( 99,103)(100,104)(101,105)(102,106)(107,111)(108,112)(109,113)
(110,114)(115,119)(116,120)(117,121)(118,122)(123,127)(124,128)(125,129)
(126,130)(131,135)(132,136)(133,137)(134,138)(139,143)(140,144)(141,145)
(142,146)(147,151)(148,152)(149,153)(150,154)(155,159)(156,160)(157,161)
(158,162)(163,167)(164,168)(165,169)(166,170)(171,175)(172,176)(173,177)
(174,178)(179,183)(180,184)(181,185)(182,186)(187,191)(188,192)(189,193)
(190,194)(195,199)(196,200)(197,201)(198,202)(203,207)(204,208)(205,209)
(206,210)(211,215)(212,216)(213,217)(214,218)(219,223)(220,224)(221,225)
(222,226)(227,231)(228,232)(229,233)(230,234)(235,239)(236,240)(237,241)
(238,242)(243,247)(244,248)(245,249)(246,250)(251,255)(252,256)(253,257)
(254,258)(259,263)(260,264)(261,265)(262,266)(267,271)(268,272)(269,273)
(270,274)(275,279)(276,280)(277,281)(278,282)(283,287)(284,288)(285,289)
(286,290)(291,295)(292,296)(293,297)(294,298)(299,303)(300,304)(301,305)
(302,306)(307,311)(308,312)(309,313)(310,314)(315,319)(316,320)(317,321)
(318,322);
poly := sub<Sym(322)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope