Polytope of Type {2,8,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,10}*1280b
if this polytope has a name.
Group : SmallGroup(1280,1116450)
Rank : 4
Schlafli Type : {2,8,10}
Number of vertices, edges, etc : 2, 32, 160, 40
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,8,5}*640b, {2,4,10}*640a
   4-fold quotients : {2,4,5}*320
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3,  5)(  4,  6)(  7,  9)(  8, 10)( 11, 13)( 12, 14)( 15, 17)( 16, 18)
( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)( 32, 34)
( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)( 48, 50)
( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)( 64, 66)
( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)( 80, 82)
( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)( 96, 98)
( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110)(111,113)(112,114)
(115,117)(116,118)(119,121)(120,122)(123,125)(124,126)(127,129)(128,130)
(131,133)(132,134)(135,137)(136,138)(139,141)(140,142)(143,145)(144,146)
(147,149)(148,150)(151,153)(152,154)(155,157)(156,158)(159,161)(160,162)
(163,165)(164,166)(167,169)(168,170)(171,173)(172,174)(175,177)(176,178)
(179,181)(180,182)(183,185)(184,186)(187,189)(188,190)(191,193)(192,194)
(195,197)(196,198)(199,201)(200,202)(203,205)(204,206)(207,209)(208,210)
(211,213)(212,214)(215,217)(216,218)(219,221)(220,222)(223,225)(224,226)
(227,229)(228,230)(231,233)(232,234)(235,237)(236,238)(239,241)(240,242)
(243,245)(244,246)(247,249)(248,250)(251,253)(252,254)(255,257)(256,258)
(259,261)(260,262)(263,265)(264,266)(267,269)(268,270)(271,273)(272,274)
(275,277)(276,278)(279,281)(280,282)(283,285)(284,286)(287,289)(288,290)
(291,293)(292,294)(295,297)(296,298)(299,301)(300,302)(303,305)(304,306)
(307,309)(308,310)(311,313)(312,314)(315,317)(316,318)(319,321)(320,322);;
s2 := (  5, 30)(  6, 29)(  7, 17)(  8, 18)(  9, 23)( 10, 24)( 11, 20)( 12, 19)
( 13, 14)( 15, 34)( 16, 33)( 25, 31)( 26, 32)( 27, 28)( 35,131)( 36,132)
( 37,158)( 38,157)( 39,145)( 40,146)( 41,151)( 42,152)( 43,148)( 44,147)
( 45,142)( 46,141)( 47,162)( 48,161)( 49,135)( 50,136)( 51,140)( 52,139)
( 53,149)( 54,150)( 55,137)( 56,138)( 57,159)( 58,160)( 59,156)( 60,155)
( 61,134)( 62,133)( 63,153)( 64,154)( 65,144)( 66,143)( 67, 99)( 68,100)
( 69,126)( 70,125)( 71,113)( 72,114)( 73,119)( 74,120)( 75,116)( 76,115)
( 77,110)( 78,109)( 79,130)( 80,129)( 81,103)( 82,104)( 83,108)( 84,107)
( 85,117)( 86,118)( 87,105)( 88,106)( 89,127)( 90,128)( 91,124)( 92,123)
( 93,102)( 94,101)( 95,121)( 96,122)( 97,112)( 98,111)(165,190)(166,189)
(167,177)(168,178)(169,183)(170,184)(171,180)(172,179)(173,174)(175,194)
(176,193)(185,191)(186,192)(187,188)(195,291)(196,292)(197,318)(198,317)
(199,305)(200,306)(201,311)(202,312)(203,308)(204,307)(205,302)(206,301)
(207,322)(208,321)(209,295)(210,296)(211,300)(212,299)(213,309)(214,310)
(215,297)(216,298)(217,319)(218,320)(219,316)(220,315)(221,294)(222,293)
(223,313)(224,314)(225,304)(226,303)(227,259)(228,260)(229,286)(230,285)
(231,273)(232,274)(233,279)(234,280)(235,276)(236,275)(237,270)(238,269)
(239,290)(240,289)(241,263)(242,264)(243,268)(244,267)(245,277)(246,278)
(247,265)(248,266)(249,287)(250,288)(251,284)(252,283)(253,262)(254,261)
(255,281)(256,282)(257,272)(258,271);;
s3 := (  3,271)(  4,272)(  5,273)(  6,274)(  7,270)(  8,269)(  9,268)( 10,267)
( 11,266)( 12,265)( 13,264)( 14,263)( 15,259)( 16,260)( 17,261)( 18,262)
( 19,277)( 20,278)( 21,275)( 22,276)( 23,279)( 24,280)( 25,281)( 26,282)
( 27,284)( 28,283)( 29,286)( 30,285)( 31,290)( 32,289)( 33,288)( 34,287)
( 35,239)( 36,240)( 37,241)( 38,242)( 39,238)( 40,237)( 41,236)( 42,235)
( 43,234)( 44,233)( 45,232)( 46,231)( 47,227)( 48,228)( 49,229)( 50,230)
( 51,245)( 52,246)( 53,243)( 54,244)( 55,247)( 56,248)( 57,249)( 58,250)
( 59,252)( 60,251)( 61,254)( 62,253)( 63,258)( 64,257)( 65,256)( 66,255)
( 67,207)( 68,208)( 69,209)( 70,210)( 71,206)( 72,205)( 73,204)( 74,203)
( 75,202)( 76,201)( 77,200)( 78,199)( 79,195)( 80,196)( 81,197)( 82,198)
( 83,213)( 84,214)( 85,211)( 86,212)( 87,215)( 88,216)( 89,217)( 90,218)
( 91,220)( 92,219)( 93,222)( 94,221)( 95,226)( 96,225)( 97,224)( 98,223)
( 99,175)(100,176)(101,177)(102,178)(103,174)(104,173)(105,172)(106,171)
(107,170)(108,169)(109,168)(110,167)(111,163)(112,164)(113,165)(114,166)
(115,181)(116,182)(117,179)(118,180)(119,183)(120,184)(121,185)(122,186)
(123,188)(124,187)(125,190)(126,189)(127,194)(128,193)(129,192)(130,191)
(131,303)(132,304)(133,305)(134,306)(135,302)(136,301)(137,300)(138,299)
(139,298)(140,297)(141,296)(142,295)(143,291)(144,292)(145,293)(146,294)
(147,309)(148,310)(149,307)(150,308)(151,311)(152,312)(153,313)(154,314)
(155,316)(156,315)(157,318)(158,317)(159,322)(160,321)(161,320)(162,319);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s2*s1*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s3*s2*s1, 
s1*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(322)!(1,2);
s1 := Sym(322)!(  3,  5)(  4,  6)(  7,  9)(  8, 10)( 11, 13)( 12, 14)( 15, 17)
( 16, 18)( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)
( 32, 34)( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)
( 48, 50)( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)
( 64, 66)( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)
( 80, 82)( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)
( 96, 98)( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110)(111,113)
(112,114)(115,117)(116,118)(119,121)(120,122)(123,125)(124,126)(127,129)
(128,130)(131,133)(132,134)(135,137)(136,138)(139,141)(140,142)(143,145)
(144,146)(147,149)(148,150)(151,153)(152,154)(155,157)(156,158)(159,161)
(160,162)(163,165)(164,166)(167,169)(168,170)(171,173)(172,174)(175,177)
(176,178)(179,181)(180,182)(183,185)(184,186)(187,189)(188,190)(191,193)
(192,194)(195,197)(196,198)(199,201)(200,202)(203,205)(204,206)(207,209)
(208,210)(211,213)(212,214)(215,217)(216,218)(219,221)(220,222)(223,225)
(224,226)(227,229)(228,230)(231,233)(232,234)(235,237)(236,238)(239,241)
(240,242)(243,245)(244,246)(247,249)(248,250)(251,253)(252,254)(255,257)
(256,258)(259,261)(260,262)(263,265)(264,266)(267,269)(268,270)(271,273)
(272,274)(275,277)(276,278)(279,281)(280,282)(283,285)(284,286)(287,289)
(288,290)(291,293)(292,294)(295,297)(296,298)(299,301)(300,302)(303,305)
(304,306)(307,309)(308,310)(311,313)(312,314)(315,317)(316,318)(319,321)
(320,322);
s2 := Sym(322)!(  5, 30)(  6, 29)(  7, 17)(  8, 18)(  9, 23)( 10, 24)( 11, 20)
( 12, 19)( 13, 14)( 15, 34)( 16, 33)( 25, 31)( 26, 32)( 27, 28)( 35,131)
( 36,132)( 37,158)( 38,157)( 39,145)( 40,146)( 41,151)( 42,152)( 43,148)
( 44,147)( 45,142)( 46,141)( 47,162)( 48,161)( 49,135)( 50,136)( 51,140)
( 52,139)( 53,149)( 54,150)( 55,137)( 56,138)( 57,159)( 58,160)( 59,156)
( 60,155)( 61,134)( 62,133)( 63,153)( 64,154)( 65,144)( 66,143)( 67, 99)
( 68,100)( 69,126)( 70,125)( 71,113)( 72,114)( 73,119)( 74,120)( 75,116)
( 76,115)( 77,110)( 78,109)( 79,130)( 80,129)( 81,103)( 82,104)( 83,108)
( 84,107)( 85,117)( 86,118)( 87,105)( 88,106)( 89,127)( 90,128)( 91,124)
( 92,123)( 93,102)( 94,101)( 95,121)( 96,122)( 97,112)( 98,111)(165,190)
(166,189)(167,177)(168,178)(169,183)(170,184)(171,180)(172,179)(173,174)
(175,194)(176,193)(185,191)(186,192)(187,188)(195,291)(196,292)(197,318)
(198,317)(199,305)(200,306)(201,311)(202,312)(203,308)(204,307)(205,302)
(206,301)(207,322)(208,321)(209,295)(210,296)(211,300)(212,299)(213,309)
(214,310)(215,297)(216,298)(217,319)(218,320)(219,316)(220,315)(221,294)
(222,293)(223,313)(224,314)(225,304)(226,303)(227,259)(228,260)(229,286)
(230,285)(231,273)(232,274)(233,279)(234,280)(235,276)(236,275)(237,270)
(238,269)(239,290)(240,289)(241,263)(242,264)(243,268)(244,267)(245,277)
(246,278)(247,265)(248,266)(249,287)(250,288)(251,284)(252,283)(253,262)
(254,261)(255,281)(256,282)(257,272)(258,271);
s3 := Sym(322)!(  3,271)(  4,272)(  5,273)(  6,274)(  7,270)(  8,269)(  9,268)
( 10,267)( 11,266)( 12,265)( 13,264)( 14,263)( 15,259)( 16,260)( 17,261)
( 18,262)( 19,277)( 20,278)( 21,275)( 22,276)( 23,279)( 24,280)( 25,281)
( 26,282)( 27,284)( 28,283)( 29,286)( 30,285)( 31,290)( 32,289)( 33,288)
( 34,287)( 35,239)( 36,240)( 37,241)( 38,242)( 39,238)( 40,237)( 41,236)
( 42,235)( 43,234)( 44,233)( 45,232)( 46,231)( 47,227)( 48,228)( 49,229)
( 50,230)( 51,245)( 52,246)( 53,243)( 54,244)( 55,247)( 56,248)( 57,249)
( 58,250)( 59,252)( 60,251)( 61,254)( 62,253)( 63,258)( 64,257)( 65,256)
( 66,255)( 67,207)( 68,208)( 69,209)( 70,210)( 71,206)( 72,205)( 73,204)
( 74,203)( 75,202)( 76,201)( 77,200)( 78,199)( 79,195)( 80,196)( 81,197)
( 82,198)( 83,213)( 84,214)( 85,211)( 86,212)( 87,215)( 88,216)( 89,217)
( 90,218)( 91,220)( 92,219)( 93,222)( 94,221)( 95,226)( 96,225)( 97,224)
( 98,223)( 99,175)(100,176)(101,177)(102,178)(103,174)(104,173)(105,172)
(106,171)(107,170)(108,169)(109,168)(110,167)(111,163)(112,164)(113,165)
(114,166)(115,181)(116,182)(117,179)(118,180)(119,183)(120,184)(121,185)
(122,186)(123,188)(124,187)(125,190)(126,189)(127,194)(128,193)(129,192)
(130,191)(131,303)(132,304)(133,305)(134,306)(135,302)(136,301)(137,300)
(138,299)(139,298)(140,297)(141,296)(142,295)(143,291)(144,292)(145,293)
(146,294)(147,309)(148,310)(149,307)(150,308)(151,311)(152,312)(153,313)
(154,314)(155,316)(156,315)(157,318)(158,317)(159,322)(160,321)(161,320)
(162,319);
poly := sub<Sym(322)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s2*s1*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s3*s2*s1, 
s1*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope