Polytope of Type {10,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,4}*1280b
if this polytope has a name.
Group : SmallGroup(1280,1116454)
Rank : 3
Schlafli Type : {10,4}
Number of vertices, edges, etc : 160, 320, 64
Order of s0s1s2 : 20
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,4}*640, {10,4}*640a, {10,4}*640b
   4-fold quotients : {5,4}*320, {10,4}*320a, {10,4}*320b
   8-fold quotients : {5,4}*160
   32-fold quotients : {10,2}*40
   64-fold quotients : {5,2}*20
   160-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  7,  8)( 11, 12)( 15, 16)( 17, 26)( 18, 25)( 19, 27)( 20, 28)
( 21, 30)( 22, 29)( 23, 31)( 24, 32)( 33, 41)( 34, 42)( 35, 44)( 36, 43)
( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 49, 50)( 53, 54)( 57, 58)( 61, 62)
( 65,121)( 66,122)( 67,124)( 68,123)( 69,125)( 70,126)( 71,128)( 72,127)
( 73,113)( 74,114)( 75,116)( 76,115)( 77,117)( 78,118)( 79,120)( 80,119)
( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)
( 89,105)( 90,106)( 91,108)( 92,107)( 93,109)( 94,110)( 95,112)( 96,111);;
s1 := (  1,  5)(  2,  6)(  3,  8)(  4,  7)(  9,102)( 10,101)( 11,103)( 12,104)
( 13, 98)( 14, 97)( 15, 99)( 16,100)( 17, 62)( 18, 61)( 19, 63)( 20, 64)
( 21, 58)( 22, 57)( 23, 59)( 24, 60)( 25, 94)( 26, 93)( 27, 95)( 28, 96)
( 29, 90)( 30, 89)( 31, 91)( 32, 92)( 33, 78)( 34, 77)( 35, 79)( 36, 80)
( 37, 74)( 38, 73)( 39, 75)( 40, 76)( 41, 46)( 42, 45)( 43, 47)( 44, 48)
( 49,117)( 50,118)( 51,120)( 52,119)( 53,113)( 54,114)( 55,116)( 56,115)
( 65, 69)( 66, 70)( 67, 72)( 68, 71)( 81,126)( 82,125)( 83,127)( 84,128)
( 85,122)( 86,121)( 87,123)( 88,124)(105,110)(106,109)(107,111)(108,112);;
s2 := (  1, 51)(  2, 52)(  3, 50)(  4, 49)(  5, 55)(  6, 56)(  7, 54)(  8, 53)
(  9, 59)( 10, 60)( 11, 58)( 12, 57)( 13, 63)( 14, 64)( 15, 62)( 16, 61)
( 17, 35)( 18, 36)( 19, 34)( 20, 33)( 21, 39)( 22, 40)( 23, 38)( 24, 37)
( 25, 43)( 26, 44)( 27, 42)( 28, 41)( 29, 47)( 30, 48)( 31, 46)( 32, 45)
( 65,115)( 66,116)( 67,114)( 68,113)( 69,119)( 70,120)( 71,118)( 72,117)
( 73,123)( 74,124)( 75,122)( 76,121)( 77,127)( 78,128)( 79,126)( 80,125)
( 81, 99)( 82,100)( 83, 98)( 84, 97)( 85,103)( 86,104)( 87,102)( 88,101)
( 89,107)( 90,108)( 91,106)( 92,105)( 93,111)( 94,112)( 95,110)( 96,109);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(128)!(  3,  4)(  7,  8)( 11, 12)( 15, 16)( 17, 26)( 18, 25)( 19, 27)
( 20, 28)( 21, 30)( 22, 29)( 23, 31)( 24, 32)( 33, 41)( 34, 42)( 35, 44)
( 36, 43)( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 49, 50)( 53, 54)( 57, 58)
( 61, 62)( 65,121)( 66,122)( 67,124)( 68,123)( 69,125)( 70,126)( 71,128)
( 72,127)( 73,113)( 74,114)( 75,116)( 76,115)( 77,117)( 78,118)( 79,120)
( 80,119)( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)
( 88,103)( 89,105)( 90,106)( 91,108)( 92,107)( 93,109)( 94,110)( 95,112)
( 96,111);
s1 := Sym(128)!(  1,  5)(  2,  6)(  3,  8)(  4,  7)(  9,102)( 10,101)( 11,103)
( 12,104)( 13, 98)( 14, 97)( 15, 99)( 16,100)( 17, 62)( 18, 61)( 19, 63)
( 20, 64)( 21, 58)( 22, 57)( 23, 59)( 24, 60)( 25, 94)( 26, 93)( 27, 95)
( 28, 96)( 29, 90)( 30, 89)( 31, 91)( 32, 92)( 33, 78)( 34, 77)( 35, 79)
( 36, 80)( 37, 74)( 38, 73)( 39, 75)( 40, 76)( 41, 46)( 42, 45)( 43, 47)
( 44, 48)( 49,117)( 50,118)( 51,120)( 52,119)( 53,113)( 54,114)( 55,116)
( 56,115)( 65, 69)( 66, 70)( 67, 72)( 68, 71)( 81,126)( 82,125)( 83,127)
( 84,128)( 85,122)( 86,121)( 87,123)( 88,124)(105,110)(106,109)(107,111)
(108,112);
s2 := Sym(128)!(  1, 51)(  2, 52)(  3, 50)(  4, 49)(  5, 55)(  6, 56)(  7, 54)
(  8, 53)(  9, 59)( 10, 60)( 11, 58)( 12, 57)( 13, 63)( 14, 64)( 15, 62)
( 16, 61)( 17, 35)( 18, 36)( 19, 34)( 20, 33)( 21, 39)( 22, 40)( 23, 38)
( 24, 37)( 25, 43)( 26, 44)( 27, 42)( 28, 41)( 29, 47)( 30, 48)( 31, 46)
( 32, 45)( 65,115)( 66,116)( 67,114)( 68,113)( 69,119)( 70,120)( 71,118)
( 72,117)( 73,123)( 74,124)( 75,122)( 76,121)( 77,127)( 78,128)( 79,126)
( 80,125)( 81, 99)( 82,100)( 83, 98)( 84, 97)( 85,103)( 86,104)( 87,102)
( 88,101)( 89,107)( 90,108)( 91,106)( 92,105)( 93,111)( 94,112)( 95,110)
( 96,109);
poly := sub<Sym(128)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1 >; 
 
References : None.
to this polytope