include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {20,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,4}*1280d
if this polytope has a name.
Group : SmallGroup(1280,1116454)
Rank : 3
Schlafli Type : {20,4}
Number of vertices, edges, etc : 160, 320, 32
Order of s0s1s2 : 10
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {20,4}*640d, {20,4}*640e, {10,4}*640b
4-fold quotients : {5,4}*320, {10,4}*320a, {10,4}*320b
8-fold quotients : {5,4}*160
32-fold quotients : {10,2}*40
64-fold quotients : {5,2}*20
160-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 17, 26)( 18, 25)( 19, 27)( 20, 28)
( 21, 30)( 22, 29)( 23, 31)( 24, 32)( 33, 41)( 34, 42)( 35, 44)( 36, 43)
( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 49, 50)( 53, 54)( 57, 58)( 61, 62)
( 65,121)( 66,122)( 67,124)( 68,123)( 69,125)( 70,126)( 71,128)( 72,127)
( 73,113)( 74,114)( 75,116)( 76,115)( 77,117)( 78,118)( 79,120)( 80,119)
( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)
( 89,105)( 90,106)( 91,108)( 92,107)( 93,109)( 94,110)( 95,112)( 96,111);;
s1 := ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9, 99)( 10,100)( 11, 97)( 12, 98)
( 13,103)( 14,104)( 15,101)( 16,102)( 17, 59)( 18, 60)( 19, 57)( 20, 58)
( 21, 63)( 22, 64)( 23, 61)( 24, 62)( 25, 91)( 26, 92)( 27, 89)( 28, 90)
( 29, 95)( 30, 96)( 31, 93)( 32, 94)( 33, 75)( 34, 76)( 35, 73)( 36, 74)
( 37, 79)( 38, 80)( 39, 77)( 40, 78)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49,116)( 50,115)( 51,114)( 52,113)( 53,120)( 54,119)( 55,118)( 56,117)
( 65, 68)( 66, 67)( 69, 72)( 70, 71)( 81,123)( 82,124)( 83,121)( 84,122)
( 85,127)( 86,128)( 87,125)( 88,126)(105,107)(106,108)(109,111)(110,112);;
s2 := ( 1, 55)( 2, 56)( 3, 54)( 4, 53)( 5, 51)( 6, 52)( 7, 50)( 8, 49)
( 9, 63)( 10, 64)( 11, 62)( 12, 61)( 13, 59)( 14, 60)( 15, 58)( 16, 57)
( 17, 39)( 18, 40)( 19, 38)( 20, 37)( 21, 35)( 22, 36)( 23, 34)( 24, 33)
( 25, 47)( 26, 48)( 27, 46)( 28, 45)( 29, 43)( 30, 44)( 31, 42)( 32, 41)
( 65,119)( 66,120)( 67,118)( 68,117)( 69,115)( 70,116)( 71,114)( 72,113)
( 73,127)( 74,128)( 75,126)( 76,125)( 77,123)( 78,124)( 79,122)( 80,121)
( 81,103)( 82,104)( 83,102)( 84,101)( 85, 99)( 86,100)( 87, 98)( 88, 97)
( 89,111)( 90,112)( 91,110)( 92,109)( 93,107)( 94,108)( 95,106)( 96,105);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(128)!( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 17, 26)( 18, 25)( 19, 27)
( 20, 28)( 21, 30)( 22, 29)( 23, 31)( 24, 32)( 33, 41)( 34, 42)( 35, 44)
( 36, 43)( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 49, 50)( 53, 54)( 57, 58)
( 61, 62)( 65,121)( 66,122)( 67,124)( 68,123)( 69,125)( 70,126)( 71,128)
( 72,127)( 73,113)( 74,114)( 75,116)( 76,115)( 77,117)( 78,118)( 79,120)
( 80,119)( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)
( 88,103)( 89,105)( 90,106)( 91,108)( 92,107)( 93,109)( 94,110)( 95,112)
( 96,111);
s1 := Sym(128)!( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9, 99)( 10,100)( 11, 97)
( 12, 98)( 13,103)( 14,104)( 15,101)( 16,102)( 17, 59)( 18, 60)( 19, 57)
( 20, 58)( 21, 63)( 22, 64)( 23, 61)( 24, 62)( 25, 91)( 26, 92)( 27, 89)
( 28, 90)( 29, 95)( 30, 96)( 31, 93)( 32, 94)( 33, 75)( 34, 76)( 35, 73)
( 36, 74)( 37, 79)( 38, 80)( 39, 77)( 40, 78)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49,116)( 50,115)( 51,114)( 52,113)( 53,120)( 54,119)( 55,118)
( 56,117)( 65, 68)( 66, 67)( 69, 72)( 70, 71)( 81,123)( 82,124)( 83,121)
( 84,122)( 85,127)( 86,128)( 87,125)( 88,126)(105,107)(106,108)(109,111)
(110,112);
s2 := Sym(128)!( 1, 55)( 2, 56)( 3, 54)( 4, 53)( 5, 51)( 6, 52)( 7, 50)
( 8, 49)( 9, 63)( 10, 64)( 11, 62)( 12, 61)( 13, 59)( 14, 60)( 15, 58)
( 16, 57)( 17, 39)( 18, 40)( 19, 38)( 20, 37)( 21, 35)( 22, 36)( 23, 34)
( 24, 33)( 25, 47)( 26, 48)( 27, 46)( 28, 45)( 29, 43)( 30, 44)( 31, 42)
( 32, 41)( 65,119)( 66,120)( 67,118)( 68,117)( 69,115)( 70,116)( 71,114)
( 72,113)( 73,127)( 74,128)( 75,126)( 76,125)( 77,123)( 78,124)( 79,122)
( 80,121)( 81,103)( 82,104)( 83,102)( 84,101)( 85, 99)( 86,100)( 87, 98)
( 88, 97)( 89,111)( 90,112)( 91,110)( 92,109)( 93,107)( 94,108)( 95,106)
( 96,105);
poly := sub<Sym(128)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope