include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,20,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,20,2}*1280a
if this polytope has a name.
Group : SmallGroup(1280,1116454)
Rank : 4
Schlafli Type : {5,20,2}
Number of vertices, edges, etc : 16, 160, 64, 2
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,10,2}*640b
4-fold quotients : {5,5,2}*320
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 28)( 4, 27)( 5, 15)( 6, 16)( 7, 21)( 8, 22)( 9, 18)( 10, 17)
( 11, 12)( 13, 32)( 14, 31)( 23, 29)( 24, 30)( 25, 26)( 33,129)( 34,130)
( 35,156)( 36,155)( 37,143)( 38,144)( 39,149)( 40,150)( 41,146)( 42,145)
( 43,140)( 44,139)( 45,160)( 46,159)( 47,133)( 48,134)( 49,138)( 50,137)
( 51,147)( 52,148)( 53,135)( 54,136)( 55,157)( 56,158)( 57,154)( 58,153)
( 59,132)( 60,131)( 61,151)( 62,152)( 63,142)( 64,141)( 65, 97)( 66, 98)
( 67,124)( 68,123)( 69,111)( 70,112)( 71,117)( 72,118)( 73,114)( 74,113)
( 75,108)( 76,107)( 77,128)( 78,127)( 79,101)( 80,102)( 81,106)( 82,105)
( 83,115)( 84,116)( 85,103)( 86,104)( 87,125)( 88,126)( 89,122)( 90,121)
( 91,100)( 92, 99)( 93,119)( 94,120)( 95,110)( 96,109)(161,162)(163,187)
(164,188)(165,176)(166,175)(167,182)(168,181)(169,177)(170,178)(173,191)
(174,192)(179,180)(183,190)(184,189)(193,290)(194,289)(195,315)(196,316)
(197,304)(198,303)(199,310)(200,309)(201,305)(202,306)(203,299)(204,300)
(205,319)(206,320)(207,294)(208,293)(209,297)(210,298)(211,308)(212,307)
(213,296)(214,295)(215,318)(216,317)(217,313)(218,314)(219,291)(220,292)
(221,312)(222,311)(223,301)(224,302)(225,258)(226,257)(227,283)(228,284)
(229,272)(230,271)(231,278)(232,277)(233,273)(234,274)(235,267)(236,268)
(237,287)(238,288)(239,262)(240,261)(241,265)(242,266)(243,276)(244,275)
(245,264)(246,263)(247,286)(248,285)(249,281)(250,282)(251,259)(252,260)
(253,280)(254,279)(255,269)(256,270);;
s1 := ( 1, 33)( 2, 34)( 3, 55)( 4, 56)( 5, 57)( 6, 58)( 7, 47)( 8, 48)
( 9, 42)( 10, 41)( 11, 63)( 12, 64)( 13, 50)( 14, 49)( 15, 39)( 16, 40)
( 17, 46)( 18, 45)( 19, 59)( 20, 60)( 21, 54)( 22, 53)( 23, 35)( 24, 36)
( 25, 37)( 26, 38)( 27, 51)( 28, 52)( 29, 61)( 30, 62)( 31, 43)( 32, 44)
( 65,129)( 66,130)( 67,151)( 68,152)( 69,153)( 70,154)( 71,143)( 72,144)
( 73,138)( 74,137)( 75,159)( 76,160)( 77,146)( 78,145)( 79,135)( 80,136)
( 81,142)( 82,141)( 83,155)( 84,156)( 85,150)( 86,149)( 87,131)( 88,132)
( 89,133)( 90,134)( 91,147)( 92,148)( 93,157)( 94,158)( 95,139)( 96,140)
( 99,119)(100,120)(101,121)(102,122)(103,111)(104,112)(105,106)(107,127)
(108,128)(109,114)(110,113)(115,123)(116,124)(117,118)(161,194)(162,193)
(163,216)(164,215)(165,218)(166,217)(167,208)(168,207)(169,201)(170,202)
(171,224)(172,223)(173,209)(174,210)(175,200)(176,199)(177,205)(178,206)
(179,220)(180,219)(181,213)(182,214)(183,196)(184,195)(185,198)(186,197)
(187,212)(188,211)(189,222)(190,221)(191,204)(192,203)(225,290)(226,289)
(227,312)(228,311)(229,314)(230,313)(231,304)(232,303)(233,297)(234,298)
(235,320)(236,319)(237,305)(238,306)(239,296)(240,295)(241,301)(242,302)
(243,316)(244,315)(245,309)(246,310)(247,292)(248,291)(249,294)(250,293)
(251,308)(252,307)(253,318)(254,317)(255,300)(256,299)(257,258)(259,280)
(260,279)(261,282)(262,281)(263,272)(264,271)(267,288)(268,287)(269,273)
(270,274)(275,284)(276,283)(285,286);;
s2 := ( 1,171)( 2,172)( 3,177)( 4,178)( 5,165)( 6,166)( 7,192)( 8,191)
( 9,188)( 10,187)( 11,161)( 12,162)( 13,182)( 14,181)( 15,176)( 16,175)
( 17,163)( 18,164)( 19,185)( 20,186)( 21,174)( 22,173)( 23,183)( 24,184)
( 25,179)( 26,180)( 27,170)( 28,169)( 29,190)( 30,189)( 31,168)( 32,167)
( 33,299)( 34,300)( 35,305)( 36,306)( 37,293)( 38,294)( 39,320)( 40,319)
( 41,316)( 42,315)( 43,289)( 44,290)( 45,310)( 46,309)( 47,304)( 48,303)
( 49,291)( 50,292)( 51,313)( 52,314)( 53,302)( 54,301)( 55,311)( 56,312)
( 57,307)( 58,308)( 59,298)( 60,297)( 61,318)( 62,317)( 63,296)( 64,295)
( 65,267)( 66,268)( 67,273)( 68,274)( 69,261)( 70,262)( 71,288)( 72,287)
( 73,284)( 74,283)( 75,257)( 76,258)( 77,278)( 78,277)( 79,272)( 80,271)
( 81,259)( 82,260)( 83,281)( 84,282)( 85,270)( 86,269)( 87,279)( 88,280)
( 89,275)( 90,276)( 91,266)( 92,265)( 93,286)( 94,285)( 95,264)( 96,263)
( 97,235)( 98,236)( 99,241)(100,242)(101,229)(102,230)(103,256)(104,255)
(105,252)(106,251)(107,225)(108,226)(109,246)(110,245)(111,240)(112,239)
(113,227)(114,228)(115,249)(116,250)(117,238)(118,237)(119,247)(120,248)
(121,243)(122,244)(123,234)(124,233)(125,254)(126,253)(127,232)(128,231)
(129,203)(130,204)(131,209)(132,210)(133,197)(134,198)(135,224)(136,223)
(137,220)(138,219)(139,193)(140,194)(141,214)(142,213)(143,208)(144,207)
(145,195)(146,196)(147,217)(148,218)(149,206)(150,205)(151,215)(152,216)
(153,211)(154,212)(155,202)(156,201)(157,222)(158,221)(159,200)(160,199);;
s3 := (321,322);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(322)!( 3, 28)( 4, 27)( 5, 15)( 6, 16)( 7, 21)( 8, 22)( 9, 18)
( 10, 17)( 11, 12)( 13, 32)( 14, 31)( 23, 29)( 24, 30)( 25, 26)( 33,129)
( 34,130)( 35,156)( 36,155)( 37,143)( 38,144)( 39,149)( 40,150)( 41,146)
( 42,145)( 43,140)( 44,139)( 45,160)( 46,159)( 47,133)( 48,134)( 49,138)
( 50,137)( 51,147)( 52,148)( 53,135)( 54,136)( 55,157)( 56,158)( 57,154)
( 58,153)( 59,132)( 60,131)( 61,151)( 62,152)( 63,142)( 64,141)( 65, 97)
( 66, 98)( 67,124)( 68,123)( 69,111)( 70,112)( 71,117)( 72,118)( 73,114)
( 74,113)( 75,108)( 76,107)( 77,128)( 78,127)( 79,101)( 80,102)( 81,106)
( 82,105)( 83,115)( 84,116)( 85,103)( 86,104)( 87,125)( 88,126)( 89,122)
( 90,121)( 91,100)( 92, 99)( 93,119)( 94,120)( 95,110)( 96,109)(161,162)
(163,187)(164,188)(165,176)(166,175)(167,182)(168,181)(169,177)(170,178)
(173,191)(174,192)(179,180)(183,190)(184,189)(193,290)(194,289)(195,315)
(196,316)(197,304)(198,303)(199,310)(200,309)(201,305)(202,306)(203,299)
(204,300)(205,319)(206,320)(207,294)(208,293)(209,297)(210,298)(211,308)
(212,307)(213,296)(214,295)(215,318)(216,317)(217,313)(218,314)(219,291)
(220,292)(221,312)(222,311)(223,301)(224,302)(225,258)(226,257)(227,283)
(228,284)(229,272)(230,271)(231,278)(232,277)(233,273)(234,274)(235,267)
(236,268)(237,287)(238,288)(239,262)(240,261)(241,265)(242,266)(243,276)
(244,275)(245,264)(246,263)(247,286)(248,285)(249,281)(250,282)(251,259)
(252,260)(253,280)(254,279)(255,269)(256,270);
s1 := Sym(322)!( 1, 33)( 2, 34)( 3, 55)( 4, 56)( 5, 57)( 6, 58)( 7, 47)
( 8, 48)( 9, 42)( 10, 41)( 11, 63)( 12, 64)( 13, 50)( 14, 49)( 15, 39)
( 16, 40)( 17, 46)( 18, 45)( 19, 59)( 20, 60)( 21, 54)( 22, 53)( 23, 35)
( 24, 36)( 25, 37)( 26, 38)( 27, 51)( 28, 52)( 29, 61)( 30, 62)( 31, 43)
( 32, 44)( 65,129)( 66,130)( 67,151)( 68,152)( 69,153)( 70,154)( 71,143)
( 72,144)( 73,138)( 74,137)( 75,159)( 76,160)( 77,146)( 78,145)( 79,135)
( 80,136)( 81,142)( 82,141)( 83,155)( 84,156)( 85,150)( 86,149)( 87,131)
( 88,132)( 89,133)( 90,134)( 91,147)( 92,148)( 93,157)( 94,158)( 95,139)
( 96,140)( 99,119)(100,120)(101,121)(102,122)(103,111)(104,112)(105,106)
(107,127)(108,128)(109,114)(110,113)(115,123)(116,124)(117,118)(161,194)
(162,193)(163,216)(164,215)(165,218)(166,217)(167,208)(168,207)(169,201)
(170,202)(171,224)(172,223)(173,209)(174,210)(175,200)(176,199)(177,205)
(178,206)(179,220)(180,219)(181,213)(182,214)(183,196)(184,195)(185,198)
(186,197)(187,212)(188,211)(189,222)(190,221)(191,204)(192,203)(225,290)
(226,289)(227,312)(228,311)(229,314)(230,313)(231,304)(232,303)(233,297)
(234,298)(235,320)(236,319)(237,305)(238,306)(239,296)(240,295)(241,301)
(242,302)(243,316)(244,315)(245,309)(246,310)(247,292)(248,291)(249,294)
(250,293)(251,308)(252,307)(253,318)(254,317)(255,300)(256,299)(257,258)
(259,280)(260,279)(261,282)(262,281)(263,272)(264,271)(267,288)(268,287)
(269,273)(270,274)(275,284)(276,283)(285,286);
s2 := Sym(322)!( 1,171)( 2,172)( 3,177)( 4,178)( 5,165)( 6,166)( 7,192)
( 8,191)( 9,188)( 10,187)( 11,161)( 12,162)( 13,182)( 14,181)( 15,176)
( 16,175)( 17,163)( 18,164)( 19,185)( 20,186)( 21,174)( 22,173)( 23,183)
( 24,184)( 25,179)( 26,180)( 27,170)( 28,169)( 29,190)( 30,189)( 31,168)
( 32,167)( 33,299)( 34,300)( 35,305)( 36,306)( 37,293)( 38,294)( 39,320)
( 40,319)( 41,316)( 42,315)( 43,289)( 44,290)( 45,310)( 46,309)( 47,304)
( 48,303)( 49,291)( 50,292)( 51,313)( 52,314)( 53,302)( 54,301)( 55,311)
( 56,312)( 57,307)( 58,308)( 59,298)( 60,297)( 61,318)( 62,317)( 63,296)
( 64,295)( 65,267)( 66,268)( 67,273)( 68,274)( 69,261)( 70,262)( 71,288)
( 72,287)( 73,284)( 74,283)( 75,257)( 76,258)( 77,278)( 78,277)( 79,272)
( 80,271)( 81,259)( 82,260)( 83,281)( 84,282)( 85,270)( 86,269)( 87,279)
( 88,280)( 89,275)( 90,276)( 91,266)( 92,265)( 93,286)( 94,285)( 95,264)
( 96,263)( 97,235)( 98,236)( 99,241)(100,242)(101,229)(102,230)(103,256)
(104,255)(105,252)(106,251)(107,225)(108,226)(109,246)(110,245)(111,240)
(112,239)(113,227)(114,228)(115,249)(116,250)(117,238)(118,237)(119,247)
(120,248)(121,243)(122,244)(123,234)(124,233)(125,254)(126,253)(127,232)
(128,231)(129,203)(130,204)(131,209)(132,210)(133,197)(134,198)(135,224)
(136,223)(137,220)(138,219)(139,193)(140,194)(141,214)(142,213)(143,208)
(144,207)(145,195)(146,196)(147,217)(148,218)(149,206)(150,205)(151,215)
(152,216)(153,211)(154,212)(155,202)(156,201)(157,222)(158,221)(159,200)
(160,199);
s3 := Sym(322)!(321,322);
poly := sub<Sym(322)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1 >;
to this polytope