include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,10,2}*640b
if this polytope has a name.
Group : SmallGroup(640,21537)
Rank : 4
Schlafli Type : {5,10,2}
Number of vertices, edges, etc : 16, 80, 32, 2
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{5,10,2,2} of size 1280
{5,10,2,3} of size 1920
Vertex Figure Of :
{2,5,10,2} of size 1280
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,5,2}*320
Covers (Minimal Covers in Boldface) :
2-fold covers : {5,10,4}*1280, {5,10,2}*1280, {10,10,2}*1280a, {5,20,2}*1280a, {5,20,2}*1280b, {10,10,2}*1280d
3-fold covers : {5,10,6}*1920, {15,10,2}*1920
Permutation Representation (GAP) :
s0 := ( 1,161)( 2,171)( 3,174)( 4,168)( 5,165)( 6,175)( 7,170)( 8,164)
( 9,173)( 10,167)( 11,162)( 12,172)( 13,169)( 14,163)( 15,166)( 16,176)
( 17,225)( 18,235)( 19,238)( 20,232)( 21,229)( 22,239)( 23,234)( 24,228)
( 25,237)( 26,231)( 27,226)( 28,236)( 29,233)( 30,227)( 31,230)( 32,240)
( 33,209)( 34,219)( 35,222)( 36,216)( 37,213)( 38,223)( 39,218)( 40,212)
( 41,221)( 42,215)( 43,210)( 44,220)( 45,217)( 46,211)( 47,214)( 48,224)
( 49,193)( 50,203)( 51,206)( 52,200)( 53,197)( 54,207)( 55,202)( 56,196)
( 57,205)( 58,199)( 59,194)( 60,204)( 61,201)( 62,195)( 63,198)( 64,208)
( 65,177)( 66,187)( 67,190)( 68,184)( 69,181)( 70,191)( 71,186)( 72,180)
( 73,189)( 74,183)( 75,178)( 76,188)( 77,185)( 78,179)( 79,182)( 80,192)
( 81,241)( 82,251)( 83,254)( 84,248)( 85,245)( 86,255)( 87,250)( 88,244)
( 89,253)( 90,247)( 91,242)( 92,252)( 93,249)( 94,243)( 95,246)( 96,256)
( 97,305)( 98,315)( 99,318)(100,312)(101,309)(102,319)(103,314)(104,308)
(105,317)(106,311)(107,306)(108,316)(109,313)(110,307)(111,310)(112,320)
(113,289)(114,299)(115,302)(116,296)(117,293)(118,303)(119,298)(120,292)
(121,301)(122,295)(123,290)(124,300)(125,297)(126,291)(127,294)(128,304)
(129,273)(130,283)(131,286)(132,280)(133,277)(134,287)(135,282)(136,276)
(137,285)(138,279)(139,274)(140,284)(141,281)(142,275)(143,278)(144,288)
(145,257)(146,267)(147,270)(148,264)(149,261)(150,271)(151,266)(152,260)
(153,269)(154,263)(155,258)(156,268)(157,265)(158,259)(159,262)(160,272);;
s1 := ( 1,177)( 2,192)( 3,179)( 4,190)( 5,183)( 6,186)( 7,181)( 8,188)
( 9,187)( 10,182)( 11,185)( 12,184)( 13,189)( 14,180)( 15,191)( 16,178)
( 17,161)( 18,176)( 19,163)( 20,174)( 21,167)( 22,170)( 23,165)( 24,172)
( 25,171)( 26,166)( 27,169)( 28,168)( 29,173)( 30,164)( 31,175)( 32,162)
( 33,225)( 34,240)( 35,227)( 36,238)( 37,231)( 38,234)( 39,229)( 40,236)
( 41,235)( 42,230)( 43,233)( 44,232)( 45,237)( 46,228)( 47,239)( 48,226)
( 49,209)( 50,224)( 51,211)( 52,222)( 53,215)( 54,218)( 55,213)( 56,220)
( 57,219)( 58,214)( 59,217)( 60,216)( 61,221)( 62,212)( 63,223)( 64,210)
( 65,193)( 66,208)( 67,195)( 68,206)( 69,199)( 70,202)( 71,197)( 72,204)
( 73,203)( 74,198)( 75,201)( 76,200)( 77,205)( 78,196)( 79,207)( 80,194)
( 81,257)( 82,272)( 83,259)( 84,270)( 85,263)( 86,266)( 87,261)( 88,268)
( 89,267)( 90,262)( 91,265)( 92,264)( 93,269)( 94,260)( 95,271)( 96,258)
( 97,241)( 98,256)( 99,243)(100,254)(101,247)(102,250)(103,245)(104,252)
(105,251)(106,246)(107,249)(108,248)(109,253)(110,244)(111,255)(112,242)
(113,305)(114,320)(115,307)(116,318)(117,311)(118,314)(119,309)(120,316)
(121,315)(122,310)(123,313)(124,312)(125,317)(126,308)(127,319)(128,306)
(129,289)(130,304)(131,291)(132,302)(133,295)(134,298)(135,293)(136,300)
(137,299)(138,294)(139,297)(140,296)(141,301)(142,292)(143,303)(144,290)
(145,273)(146,288)(147,275)(148,286)(149,279)(150,282)(151,277)(152,284)
(153,283)(154,278)(155,281)(156,280)(157,285)(158,276)(159,287)(160,274);;
s2 := ( 1,245)( 2,255)( 3,250)( 4,244)( 5,241)( 6,251)( 7,254)( 8,248)
( 9,249)( 10,243)( 11,246)( 12,256)( 13,253)( 14,247)( 15,242)( 16,252)
( 17,309)( 18,319)( 19,314)( 20,308)( 21,305)( 22,315)( 23,318)( 24,312)
( 25,313)( 26,307)( 27,310)( 28,320)( 29,317)( 30,311)( 31,306)( 32,316)
( 33,293)( 34,303)( 35,298)( 36,292)( 37,289)( 38,299)( 39,302)( 40,296)
( 41,297)( 42,291)( 43,294)( 44,304)( 45,301)( 46,295)( 47,290)( 48,300)
( 49,277)( 50,287)( 51,282)( 52,276)( 53,273)( 54,283)( 55,286)( 56,280)
( 57,281)( 58,275)( 59,278)( 60,288)( 61,285)( 62,279)( 63,274)( 64,284)
( 65,261)( 66,271)( 67,266)( 68,260)( 69,257)( 70,267)( 71,270)( 72,264)
( 73,265)( 74,259)( 75,262)( 76,272)( 77,269)( 78,263)( 79,258)( 80,268)
( 81,165)( 82,175)( 83,170)( 84,164)( 85,161)( 86,171)( 87,174)( 88,168)
( 89,169)( 90,163)( 91,166)( 92,176)( 93,173)( 94,167)( 95,162)( 96,172)
( 97,229)( 98,239)( 99,234)(100,228)(101,225)(102,235)(103,238)(104,232)
(105,233)(106,227)(107,230)(108,240)(109,237)(110,231)(111,226)(112,236)
(113,213)(114,223)(115,218)(116,212)(117,209)(118,219)(119,222)(120,216)
(121,217)(122,211)(123,214)(124,224)(125,221)(126,215)(127,210)(128,220)
(129,197)(130,207)(131,202)(132,196)(133,193)(134,203)(135,206)(136,200)
(137,201)(138,195)(139,198)(140,208)(141,205)(142,199)(143,194)(144,204)
(145,181)(146,191)(147,186)(148,180)(149,177)(150,187)(151,190)(152,184)
(153,185)(154,179)(155,182)(156,192)(157,189)(158,183)(159,178)(160,188);;
s3 := (321,322);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(322)!( 1,161)( 2,171)( 3,174)( 4,168)( 5,165)( 6,175)( 7,170)
( 8,164)( 9,173)( 10,167)( 11,162)( 12,172)( 13,169)( 14,163)( 15,166)
( 16,176)( 17,225)( 18,235)( 19,238)( 20,232)( 21,229)( 22,239)( 23,234)
( 24,228)( 25,237)( 26,231)( 27,226)( 28,236)( 29,233)( 30,227)( 31,230)
( 32,240)( 33,209)( 34,219)( 35,222)( 36,216)( 37,213)( 38,223)( 39,218)
( 40,212)( 41,221)( 42,215)( 43,210)( 44,220)( 45,217)( 46,211)( 47,214)
( 48,224)( 49,193)( 50,203)( 51,206)( 52,200)( 53,197)( 54,207)( 55,202)
( 56,196)( 57,205)( 58,199)( 59,194)( 60,204)( 61,201)( 62,195)( 63,198)
( 64,208)( 65,177)( 66,187)( 67,190)( 68,184)( 69,181)( 70,191)( 71,186)
( 72,180)( 73,189)( 74,183)( 75,178)( 76,188)( 77,185)( 78,179)( 79,182)
( 80,192)( 81,241)( 82,251)( 83,254)( 84,248)( 85,245)( 86,255)( 87,250)
( 88,244)( 89,253)( 90,247)( 91,242)( 92,252)( 93,249)( 94,243)( 95,246)
( 96,256)( 97,305)( 98,315)( 99,318)(100,312)(101,309)(102,319)(103,314)
(104,308)(105,317)(106,311)(107,306)(108,316)(109,313)(110,307)(111,310)
(112,320)(113,289)(114,299)(115,302)(116,296)(117,293)(118,303)(119,298)
(120,292)(121,301)(122,295)(123,290)(124,300)(125,297)(126,291)(127,294)
(128,304)(129,273)(130,283)(131,286)(132,280)(133,277)(134,287)(135,282)
(136,276)(137,285)(138,279)(139,274)(140,284)(141,281)(142,275)(143,278)
(144,288)(145,257)(146,267)(147,270)(148,264)(149,261)(150,271)(151,266)
(152,260)(153,269)(154,263)(155,258)(156,268)(157,265)(158,259)(159,262)
(160,272);
s1 := Sym(322)!( 1,177)( 2,192)( 3,179)( 4,190)( 5,183)( 6,186)( 7,181)
( 8,188)( 9,187)( 10,182)( 11,185)( 12,184)( 13,189)( 14,180)( 15,191)
( 16,178)( 17,161)( 18,176)( 19,163)( 20,174)( 21,167)( 22,170)( 23,165)
( 24,172)( 25,171)( 26,166)( 27,169)( 28,168)( 29,173)( 30,164)( 31,175)
( 32,162)( 33,225)( 34,240)( 35,227)( 36,238)( 37,231)( 38,234)( 39,229)
( 40,236)( 41,235)( 42,230)( 43,233)( 44,232)( 45,237)( 46,228)( 47,239)
( 48,226)( 49,209)( 50,224)( 51,211)( 52,222)( 53,215)( 54,218)( 55,213)
( 56,220)( 57,219)( 58,214)( 59,217)( 60,216)( 61,221)( 62,212)( 63,223)
( 64,210)( 65,193)( 66,208)( 67,195)( 68,206)( 69,199)( 70,202)( 71,197)
( 72,204)( 73,203)( 74,198)( 75,201)( 76,200)( 77,205)( 78,196)( 79,207)
( 80,194)( 81,257)( 82,272)( 83,259)( 84,270)( 85,263)( 86,266)( 87,261)
( 88,268)( 89,267)( 90,262)( 91,265)( 92,264)( 93,269)( 94,260)( 95,271)
( 96,258)( 97,241)( 98,256)( 99,243)(100,254)(101,247)(102,250)(103,245)
(104,252)(105,251)(106,246)(107,249)(108,248)(109,253)(110,244)(111,255)
(112,242)(113,305)(114,320)(115,307)(116,318)(117,311)(118,314)(119,309)
(120,316)(121,315)(122,310)(123,313)(124,312)(125,317)(126,308)(127,319)
(128,306)(129,289)(130,304)(131,291)(132,302)(133,295)(134,298)(135,293)
(136,300)(137,299)(138,294)(139,297)(140,296)(141,301)(142,292)(143,303)
(144,290)(145,273)(146,288)(147,275)(148,286)(149,279)(150,282)(151,277)
(152,284)(153,283)(154,278)(155,281)(156,280)(157,285)(158,276)(159,287)
(160,274);
s2 := Sym(322)!( 1,245)( 2,255)( 3,250)( 4,244)( 5,241)( 6,251)( 7,254)
( 8,248)( 9,249)( 10,243)( 11,246)( 12,256)( 13,253)( 14,247)( 15,242)
( 16,252)( 17,309)( 18,319)( 19,314)( 20,308)( 21,305)( 22,315)( 23,318)
( 24,312)( 25,313)( 26,307)( 27,310)( 28,320)( 29,317)( 30,311)( 31,306)
( 32,316)( 33,293)( 34,303)( 35,298)( 36,292)( 37,289)( 38,299)( 39,302)
( 40,296)( 41,297)( 42,291)( 43,294)( 44,304)( 45,301)( 46,295)( 47,290)
( 48,300)( 49,277)( 50,287)( 51,282)( 52,276)( 53,273)( 54,283)( 55,286)
( 56,280)( 57,281)( 58,275)( 59,278)( 60,288)( 61,285)( 62,279)( 63,274)
( 64,284)( 65,261)( 66,271)( 67,266)( 68,260)( 69,257)( 70,267)( 71,270)
( 72,264)( 73,265)( 74,259)( 75,262)( 76,272)( 77,269)( 78,263)( 79,258)
( 80,268)( 81,165)( 82,175)( 83,170)( 84,164)( 85,161)( 86,171)( 87,174)
( 88,168)( 89,169)( 90,163)( 91,166)( 92,176)( 93,173)( 94,167)( 95,162)
( 96,172)( 97,229)( 98,239)( 99,234)(100,228)(101,225)(102,235)(103,238)
(104,232)(105,233)(106,227)(107,230)(108,240)(109,237)(110,231)(111,226)
(112,236)(113,213)(114,223)(115,218)(116,212)(117,209)(118,219)(119,222)
(120,216)(121,217)(122,211)(123,214)(124,224)(125,221)(126,215)(127,210)
(128,220)(129,197)(130,207)(131,202)(132,196)(133,193)(134,203)(135,206)
(136,200)(137,201)(138,195)(139,198)(140,208)(141,205)(142,199)(143,194)
(144,204)(145,181)(146,191)(147,186)(148,180)(149,177)(150,187)(151,190)
(152,184)(153,185)(154,179)(155,182)(156,192)(157,189)(158,183)(159,178)
(160,188);
s3 := Sym(322)!(321,322);
poly := sub<Sym(322)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >;
to this polytope