include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,10}*1280e
if this polytope has a name.
Group : SmallGroup(1280,1116459)
Rank : 3
Schlafli Type : {8,10}
Number of vertices, edges, etc : 64, 320, 80
Order of s0s1s2 : 10
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,10}*640b
4-fold quotients : {4,5}*320, {4,10}*320a, {4,10}*320b
8-fold quotients : {4,5}*160
32-fold quotients : {2,10}*40
64-fold quotients : {2,5}*20
160-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 63)( 2, 64)( 3, 62)( 4, 61)( 5, 59)( 6, 60)( 7, 58)( 8, 57)
( 9, 55)( 10, 56)( 11, 54)( 12, 53)( 13, 51)( 14, 52)( 15, 50)( 16, 49)
( 17, 47)( 18, 48)( 19, 46)( 20, 45)( 21, 43)( 22, 44)( 23, 42)( 24, 41)
( 25, 39)( 26, 40)( 27, 38)( 28, 37)( 29, 35)( 30, 36)( 31, 34)( 32, 33)
( 65,127)( 66,128)( 67,126)( 68,125)( 69,123)( 70,124)( 71,122)( 72,121)
( 73,119)( 74,120)( 75,118)( 76,117)( 77,115)( 78,116)( 79,114)( 80,113)
( 81,111)( 82,112)( 83,110)( 84,109)( 85,107)( 86,108)( 87,106)( 88,105)
( 89,103)( 90,104)( 91,102)( 92,101)( 93, 99)( 94,100)( 95, 98)( 96, 97);;
s1 := ( 9, 98)( 10, 97)( 11,100)( 12, 99)( 13,102)( 14,101)( 15,104)( 16,103)
( 17, 58)( 18, 57)( 19, 60)( 20, 59)( 21, 62)( 22, 61)( 23, 64)( 24, 63)
( 25, 90)( 26, 89)( 27, 92)( 28, 91)( 29, 94)( 30, 93)( 31, 96)( 32, 95)
( 33, 74)( 34, 73)( 35, 76)( 36, 75)( 37, 78)( 38, 77)( 39, 80)( 40, 79)
( 41, 42)( 43, 44)( 45, 46)( 47, 48)( 49,113)( 50,114)( 51,115)( 52,116)
( 53,117)( 54,118)( 55,119)( 56,120)( 81,122)( 82,121)( 83,124)( 84,123)
( 85,126)( 86,125)( 87,128)( 88,127)(105,106)(107,108)(109,110)(111,112);;
s2 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9, 13)( 10, 14)( 11, 16)( 12, 15)
( 17, 30)( 18, 29)( 19, 31)( 20, 32)( 21, 26)( 22, 25)( 23, 27)( 24, 28)
( 33, 45)( 34, 46)( 35, 48)( 36, 47)( 37, 41)( 38, 42)( 39, 44)( 40, 43)
( 49, 54)( 50, 53)( 51, 55)( 52, 56)( 57, 62)( 58, 61)( 59, 63)( 60, 64)
( 65,125)( 66,126)( 67,128)( 68,127)( 69,121)( 70,122)( 71,124)( 72,123)
( 73,117)( 74,118)( 75,120)( 76,119)( 77,113)( 78,114)( 79,116)( 80,115)
( 81,101)( 82,102)( 83,104)( 84,103)( 85, 97)( 86, 98)( 87,100)( 88, 99)
( 89,109)( 90,110)( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(128)!( 1, 63)( 2, 64)( 3, 62)( 4, 61)( 5, 59)( 6, 60)( 7, 58)
( 8, 57)( 9, 55)( 10, 56)( 11, 54)( 12, 53)( 13, 51)( 14, 52)( 15, 50)
( 16, 49)( 17, 47)( 18, 48)( 19, 46)( 20, 45)( 21, 43)( 22, 44)( 23, 42)
( 24, 41)( 25, 39)( 26, 40)( 27, 38)( 28, 37)( 29, 35)( 30, 36)( 31, 34)
( 32, 33)( 65,127)( 66,128)( 67,126)( 68,125)( 69,123)( 70,124)( 71,122)
( 72,121)( 73,119)( 74,120)( 75,118)( 76,117)( 77,115)( 78,116)( 79,114)
( 80,113)( 81,111)( 82,112)( 83,110)( 84,109)( 85,107)( 86,108)( 87,106)
( 88,105)( 89,103)( 90,104)( 91,102)( 92,101)( 93, 99)( 94,100)( 95, 98)
( 96, 97);
s1 := Sym(128)!( 9, 98)( 10, 97)( 11,100)( 12, 99)( 13,102)( 14,101)( 15,104)
( 16,103)( 17, 58)( 18, 57)( 19, 60)( 20, 59)( 21, 62)( 22, 61)( 23, 64)
( 24, 63)( 25, 90)( 26, 89)( 27, 92)( 28, 91)( 29, 94)( 30, 93)( 31, 96)
( 32, 95)( 33, 74)( 34, 73)( 35, 76)( 36, 75)( 37, 78)( 38, 77)( 39, 80)
( 40, 79)( 41, 42)( 43, 44)( 45, 46)( 47, 48)( 49,113)( 50,114)( 51,115)
( 52,116)( 53,117)( 54,118)( 55,119)( 56,120)( 81,122)( 82,121)( 83,124)
( 84,123)( 85,126)( 86,125)( 87,128)( 88,127)(105,106)(107,108)(109,110)
(111,112);
s2 := Sym(128)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9, 13)( 10, 14)( 11, 16)
( 12, 15)( 17, 30)( 18, 29)( 19, 31)( 20, 32)( 21, 26)( 22, 25)( 23, 27)
( 24, 28)( 33, 45)( 34, 46)( 35, 48)( 36, 47)( 37, 41)( 38, 42)( 39, 44)
( 40, 43)( 49, 54)( 50, 53)( 51, 55)( 52, 56)( 57, 62)( 58, 61)( 59, 63)
( 60, 64)( 65,125)( 66,126)( 67,128)( 68,127)( 69,121)( 70,122)( 71,124)
( 72,123)( 73,117)( 74,118)( 75,120)( 76,119)( 77,113)( 78,114)( 79,116)
( 80,115)( 81,101)( 82,102)( 83,104)( 84,103)( 85, 97)( 86, 98)( 87,100)
( 88, 99)( 89,109)( 90,110)( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)
( 96,107);
poly := sub<Sym(128)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1 >;
References : None.
to this polytope