Polytope of Type {10,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,10}*1280c
if this polytope has a name.
Group : SmallGroup(1280,1116459)
Rank : 3
Schlafli Type : {10,10}
Number of vertices, edges, etc : 64, 320, 64
Order of s0s1s2 : 8
Order of s0s1s2s1 : 20
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,10}*640d
   4-fold quotients : {5,10}*320b, {10,5}*320b
   8-fold quotients : {5,5}*160
   160-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  5)(  2,  6)(  3,  8)(  4,  7)(  9, 13)( 10, 14)( 11, 16)( 12, 15)
( 17, 30)( 18, 29)( 19, 31)( 20, 32)( 21, 26)( 22, 25)( 23, 27)( 24, 28)
( 33, 45)( 34, 46)( 35, 48)( 36, 47)( 37, 41)( 38, 42)( 39, 44)( 40, 43)
( 49, 54)( 50, 53)( 51, 55)( 52, 56)( 57, 62)( 58, 61)( 59, 63)( 60, 64)
( 65,125)( 66,126)( 67,128)( 68,127)( 69,121)( 70,122)( 71,124)( 72,123)
( 73,117)( 74,118)( 75,120)( 76,119)( 77,113)( 78,114)( 79,116)( 80,115)
( 81,101)( 82,102)( 83,104)( 84,103)( 85, 97)( 86, 98)( 87,100)( 88, 99)
( 89,109)( 90,110)( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107);;
s1 := (  9, 98)( 10, 97)( 11,100)( 12, 99)( 13,102)( 14,101)( 15,104)( 16,103)
( 17, 58)( 18, 57)( 19, 60)( 20, 59)( 21, 62)( 22, 61)( 23, 64)( 24, 63)
( 25, 90)( 26, 89)( 27, 92)( 28, 91)( 29, 94)( 30, 93)( 31, 96)( 32, 95)
( 33, 74)( 34, 73)( 35, 76)( 36, 75)( 37, 78)( 38, 77)( 39, 80)( 40, 79)
( 41, 42)( 43, 44)( 45, 46)( 47, 48)( 49,113)( 50,114)( 51,115)( 52,116)
( 53,117)( 54,118)( 55,119)( 56,120)( 81,122)( 82,121)( 83,124)( 84,123)
( 85,126)( 86,125)( 87,128)( 88,127)(105,106)(107,108)(109,110)(111,112);;
s2 := (  1, 60)(  2, 59)(  3, 58)(  4, 57)(  5, 64)(  6, 63)(  7, 62)(  8, 61)
(  9, 52)( 10, 51)( 11, 50)( 12, 49)( 13, 56)( 14, 55)( 15, 54)( 16, 53)
( 17, 35)( 18, 36)( 19, 33)( 20, 34)( 21, 39)( 22, 40)( 23, 37)( 24, 38)
( 25, 43)( 26, 44)( 27, 41)( 28, 42)( 29, 47)( 30, 48)( 31, 45)( 32, 46)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 91)( 82, 92)( 83, 89)( 84, 90)( 85, 95)( 86, 96)( 87, 93)( 88, 94)
( 97,108)( 98,107)( 99,106)(100,105)(101,112)(102,111)(103,110)(104,109)
(113,116)(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)(126,127);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(128)!(  1,  5)(  2,  6)(  3,  8)(  4,  7)(  9, 13)( 10, 14)( 11, 16)
( 12, 15)( 17, 30)( 18, 29)( 19, 31)( 20, 32)( 21, 26)( 22, 25)( 23, 27)
( 24, 28)( 33, 45)( 34, 46)( 35, 48)( 36, 47)( 37, 41)( 38, 42)( 39, 44)
( 40, 43)( 49, 54)( 50, 53)( 51, 55)( 52, 56)( 57, 62)( 58, 61)( 59, 63)
( 60, 64)( 65,125)( 66,126)( 67,128)( 68,127)( 69,121)( 70,122)( 71,124)
( 72,123)( 73,117)( 74,118)( 75,120)( 76,119)( 77,113)( 78,114)( 79,116)
( 80,115)( 81,101)( 82,102)( 83,104)( 84,103)( 85, 97)( 86, 98)( 87,100)
( 88, 99)( 89,109)( 90,110)( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)
( 96,107);
s1 := Sym(128)!(  9, 98)( 10, 97)( 11,100)( 12, 99)( 13,102)( 14,101)( 15,104)
( 16,103)( 17, 58)( 18, 57)( 19, 60)( 20, 59)( 21, 62)( 22, 61)( 23, 64)
( 24, 63)( 25, 90)( 26, 89)( 27, 92)( 28, 91)( 29, 94)( 30, 93)( 31, 96)
( 32, 95)( 33, 74)( 34, 73)( 35, 76)( 36, 75)( 37, 78)( 38, 77)( 39, 80)
( 40, 79)( 41, 42)( 43, 44)( 45, 46)( 47, 48)( 49,113)( 50,114)( 51,115)
( 52,116)( 53,117)( 54,118)( 55,119)( 56,120)( 81,122)( 82,121)( 83,124)
( 84,123)( 85,126)( 86,125)( 87,128)( 88,127)(105,106)(107,108)(109,110)
(111,112);
s2 := Sym(128)!(  1, 60)(  2, 59)(  3, 58)(  4, 57)(  5, 64)(  6, 63)(  7, 62)
(  8, 61)(  9, 52)( 10, 51)( 11, 50)( 12, 49)( 13, 56)( 14, 55)( 15, 54)
( 16, 53)( 17, 35)( 18, 36)( 19, 33)( 20, 34)( 21, 39)( 22, 40)( 23, 37)
( 24, 38)( 25, 43)( 26, 44)( 27, 41)( 28, 42)( 29, 47)( 30, 48)( 31, 45)
( 32, 46)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 91)( 82, 92)( 83, 89)( 84, 90)( 85, 95)( 86, 96)( 87, 93)
( 88, 94)( 97,108)( 98,107)( 99,106)(100,105)(101,112)(102,111)(103,110)
(104,109)(113,116)(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)
(126,127);
poly := sub<Sym(128)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1 >; 
 
References : None.
to this polytope