include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,40,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,40,8}*1280c
if this polytope has a name.
Group : SmallGroup(1280,145174)
Rank : 4
Schlafli Type : {2,40,8}
Number of vertices, edges, etc : 2, 40, 160, 8
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,40,4}*640a, {2,20,8}*640a
4-fold quotients : {2,20,4}*320, {2,40,2}*320, {2,10,8}*320
5-fold quotients : {2,8,8}*256b
8-fold quotients : {2,20,2}*160, {2,10,4}*160
10-fold quotients : {2,4,8}*128a, {2,8,4}*128a
16-fold quotients : {2,10,2}*80
20-fold quotients : {2,4,4}*64, {2,2,8}*64, {2,8,2}*64
32-fold quotients : {2,5,2}*40
40-fold quotients : {2,2,4}*32, {2,4,2}*32
80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,243)( 4,247)( 5,246)( 6,245)( 7,244)( 8,248)( 9,252)( 10,251)
( 11,250)( 12,249)( 13,253)( 14,257)( 15,256)( 16,255)( 17,254)( 18,258)
( 19,262)( 20,261)( 21,260)( 22,259)( 23,263)( 24,267)( 25,266)( 26,265)
( 27,264)( 28,268)( 29,272)( 30,271)( 31,270)( 32,269)( 33,273)( 34,277)
( 35,276)( 36,275)( 37,274)( 38,278)( 39,282)( 40,281)( 41,280)( 42,279)
( 43,298)( 44,302)( 45,301)( 46,300)( 47,299)( 48,293)( 49,297)( 50,296)
( 51,295)( 52,294)( 53,288)( 54,292)( 55,291)( 56,290)( 57,289)( 58,283)
( 59,287)( 60,286)( 61,285)( 62,284)( 63,318)( 64,322)( 65,321)( 66,320)
( 67,319)( 68,313)( 69,317)( 70,316)( 71,315)( 72,314)( 73,308)( 74,312)
( 75,311)( 76,310)( 77,309)( 78,303)( 79,307)( 80,306)( 81,305)( 82,304)
( 83,163)( 84,167)( 85,166)( 86,165)( 87,164)( 88,168)( 89,172)( 90,171)
( 91,170)( 92,169)( 93,173)( 94,177)( 95,176)( 96,175)( 97,174)( 98,178)
( 99,182)(100,181)(101,180)(102,179)(103,183)(104,187)(105,186)(106,185)
(107,184)(108,188)(109,192)(110,191)(111,190)(112,189)(113,193)(114,197)
(115,196)(116,195)(117,194)(118,198)(119,202)(120,201)(121,200)(122,199)
(123,218)(124,222)(125,221)(126,220)(127,219)(128,213)(129,217)(130,216)
(131,215)(132,214)(133,208)(134,212)(135,211)(136,210)(137,209)(138,203)
(139,207)(140,206)(141,205)(142,204)(143,238)(144,242)(145,241)(146,240)
(147,239)(148,233)(149,237)(150,236)(151,235)(152,234)(153,228)(154,232)
(155,231)(156,230)(157,229)(158,223)(159,227)(160,226)(161,225)(162,224);;
s2 := ( 3, 4)( 5, 7)( 8, 9)( 10, 12)( 13, 14)( 15, 17)( 18, 19)( 20, 22)
( 23, 29)( 24, 28)( 25, 32)( 26, 31)( 27, 30)( 33, 39)( 34, 38)( 35, 42)
( 36, 41)( 37, 40)( 43, 54)( 44, 53)( 45, 57)( 46, 56)( 47, 55)( 48, 59)
( 49, 58)( 50, 62)( 51, 61)( 52, 60)( 63, 79)( 64, 78)( 65, 82)( 66, 81)
( 67, 80)( 68, 74)( 69, 73)( 70, 77)( 71, 76)( 72, 75)( 83,104)( 84,103)
( 85,107)( 86,106)( 87,105)( 88,109)( 89,108)( 90,112)( 91,111)( 92,110)
( 93,114)( 94,113)( 95,117)( 96,116)( 97,115)( 98,119)( 99,118)(100,122)
(101,121)(102,120)(123,154)(124,153)(125,157)(126,156)(127,155)(128,159)
(129,158)(130,162)(131,161)(132,160)(133,144)(134,143)(135,147)(136,146)
(137,145)(138,149)(139,148)(140,152)(141,151)(142,150)(163,204)(164,203)
(165,207)(166,206)(167,205)(168,209)(169,208)(170,212)(171,211)(172,210)
(173,214)(174,213)(175,217)(176,216)(177,215)(178,219)(179,218)(180,222)
(181,221)(182,220)(183,229)(184,228)(185,232)(186,231)(187,230)(188,224)
(189,223)(190,227)(191,226)(192,225)(193,239)(194,238)(195,242)(196,241)
(197,240)(198,234)(199,233)(200,237)(201,236)(202,235)(243,309)(244,308)
(245,312)(246,311)(247,310)(248,304)(249,303)(250,307)(251,306)(252,305)
(253,319)(254,318)(255,322)(256,321)(257,320)(258,314)(259,313)(260,317)
(261,316)(262,315)(263,289)(264,288)(265,292)(266,291)(267,290)(268,284)
(269,283)(270,287)(271,286)(272,285)(273,299)(274,298)(275,302)(276,301)
(277,300)(278,294)(279,293)(280,297)(281,296)(282,295);;
s3 := ( 3, 83)( 4, 84)( 5, 85)( 6, 86)( 7, 87)( 8, 88)( 9, 89)( 10, 90)
( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)( 17, 97)( 18, 98)
( 19, 99)( 20,100)( 21,101)( 22,102)( 23,108)( 24,109)( 25,110)( 26,111)
( 27,112)( 28,103)( 29,104)( 30,105)( 31,106)( 32,107)( 33,118)( 34,119)
( 35,120)( 36,121)( 37,122)( 38,113)( 39,114)( 40,115)( 41,116)( 42,117)
( 43,128)( 44,129)( 45,130)( 46,131)( 47,132)( 48,123)( 49,124)( 50,125)
( 51,126)( 52,127)( 53,138)( 54,139)( 55,140)( 56,141)( 57,142)( 58,133)
( 59,134)( 60,135)( 61,136)( 62,137)( 63,143)( 64,144)( 65,145)( 66,146)
( 67,147)( 68,148)( 69,149)( 70,150)( 71,151)( 72,152)( 73,153)( 74,154)
( 75,155)( 76,156)( 77,157)( 78,158)( 79,159)( 80,160)( 81,161)( 82,162)
(163,243)(164,244)(165,245)(166,246)(167,247)(168,248)(169,249)(170,250)
(171,251)(172,252)(173,253)(174,254)(175,255)(176,256)(177,257)(178,258)
(179,259)(180,260)(181,261)(182,262)(183,268)(184,269)(185,270)(186,271)
(187,272)(188,263)(189,264)(190,265)(191,266)(192,267)(193,278)(194,279)
(195,280)(196,281)(197,282)(198,273)(199,274)(200,275)(201,276)(202,277)
(203,288)(204,289)(205,290)(206,291)(207,292)(208,283)(209,284)(210,285)
(211,286)(212,287)(213,298)(214,299)(215,300)(216,301)(217,302)(218,293)
(219,294)(220,295)(221,296)(222,297)(223,303)(224,304)(225,305)(226,306)
(227,307)(228,308)(229,309)(230,310)(231,311)(232,312)(233,313)(234,314)
(235,315)(236,316)(237,317)(238,318)(239,319)(240,320)(241,321)(242,322);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(322)!(1,2);
s1 := Sym(322)!( 3,243)( 4,247)( 5,246)( 6,245)( 7,244)( 8,248)( 9,252)
( 10,251)( 11,250)( 12,249)( 13,253)( 14,257)( 15,256)( 16,255)( 17,254)
( 18,258)( 19,262)( 20,261)( 21,260)( 22,259)( 23,263)( 24,267)( 25,266)
( 26,265)( 27,264)( 28,268)( 29,272)( 30,271)( 31,270)( 32,269)( 33,273)
( 34,277)( 35,276)( 36,275)( 37,274)( 38,278)( 39,282)( 40,281)( 41,280)
( 42,279)( 43,298)( 44,302)( 45,301)( 46,300)( 47,299)( 48,293)( 49,297)
( 50,296)( 51,295)( 52,294)( 53,288)( 54,292)( 55,291)( 56,290)( 57,289)
( 58,283)( 59,287)( 60,286)( 61,285)( 62,284)( 63,318)( 64,322)( 65,321)
( 66,320)( 67,319)( 68,313)( 69,317)( 70,316)( 71,315)( 72,314)( 73,308)
( 74,312)( 75,311)( 76,310)( 77,309)( 78,303)( 79,307)( 80,306)( 81,305)
( 82,304)( 83,163)( 84,167)( 85,166)( 86,165)( 87,164)( 88,168)( 89,172)
( 90,171)( 91,170)( 92,169)( 93,173)( 94,177)( 95,176)( 96,175)( 97,174)
( 98,178)( 99,182)(100,181)(101,180)(102,179)(103,183)(104,187)(105,186)
(106,185)(107,184)(108,188)(109,192)(110,191)(111,190)(112,189)(113,193)
(114,197)(115,196)(116,195)(117,194)(118,198)(119,202)(120,201)(121,200)
(122,199)(123,218)(124,222)(125,221)(126,220)(127,219)(128,213)(129,217)
(130,216)(131,215)(132,214)(133,208)(134,212)(135,211)(136,210)(137,209)
(138,203)(139,207)(140,206)(141,205)(142,204)(143,238)(144,242)(145,241)
(146,240)(147,239)(148,233)(149,237)(150,236)(151,235)(152,234)(153,228)
(154,232)(155,231)(156,230)(157,229)(158,223)(159,227)(160,226)(161,225)
(162,224);
s2 := Sym(322)!( 3, 4)( 5, 7)( 8, 9)( 10, 12)( 13, 14)( 15, 17)( 18, 19)
( 20, 22)( 23, 29)( 24, 28)( 25, 32)( 26, 31)( 27, 30)( 33, 39)( 34, 38)
( 35, 42)( 36, 41)( 37, 40)( 43, 54)( 44, 53)( 45, 57)( 46, 56)( 47, 55)
( 48, 59)( 49, 58)( 50, 62)( 51, 61)( 52, 60)( 63, 79)( 64, 78)( 65, 82)
( 66, 81)( 67, 80)( 68, 74)( 69, 73)( 70, 77)( 71, 76)( 72, 75)( 83,104)
( 84,103)( 85,107)( 86,106)( 87,105)( 88,109)( 89,108)( 90,112)( 91,111)
( 92,110)( 93,114)( 94,113)( 95,117)( 96,116)( 97,115)( 98,119)( 99,118)
(100,122)(101,121)(102,120)(123,154)(124,153)(125,157)(126,156)(127,155)
(128,159)(129,158)(130,162)(131,161)(132,160)(133,144)(134,143)(135,147)
(136,146)(137,145)(138,149)(139,148)(140,152)(141,151)(142,150)(163,204)
(164,203)(165,207)(166,206)(167,205)(168,209)(169,208)(170,212)(171,211)
(172,210)(173,214)(174,213)(175,217)(176,216)(177,215)(178,219)(179,218)
(180,222)(181,221)(182,220)(183,229)(184,228)(185,232)(186,231)(187,230)
(188,224)(189,223)(190,227)(191,226)(192,225)(193,239)(194,238)(195,242)
(196,241)(197,240)(198,234)(199,233)(200,237)(201,236)(202,235)(243,309)
(244,308)(245,312)(246,311)(247,310)(248,304)(249,303)(250,307)(251,306)
(252,305)(253,319)(254,318)(255,322)(256,321)(257,320)(258,314)(259,313)
(260,317)(261,316)(262,315)(263,289)(264,288)(265,292)(266,291)(267,290)
(268,284)(269,283)(270,287)(271,286)(272,285)(273,299)(274,298)(275,302)
(276,301)(277,300)(278,294)(279,293)(280,297)(281,296)(282,295);
s3 := Sym(322)!( 3, 83)( 4, 84)( 5, 85)( 6, 86)( 7, 87)( 8, 88)( 9, 89)
( 10, 90)( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)( 17, 97)
( 18, 98)( 19, 99)( 20,100)( 21,101)( 22,102)( 23,108)( 24,109)( 25,110)
( 26,111)( 27,112)( 28,103)( 29,104)( 30,105)( 31,106)( 32,107)( 33,118)
( 34,119)( 35,120)( 36,121)( 37,122)( 38,113)( 39,114)( 40,115)( 41,116)
( 42,117)( 43,128)( 44,129)( 45,130)( 46,131)( 47,132)( 48,123)( 49,124)
( 50,125)( 51,126)( 52,127)( 53,138)( 54,139)( 55,140)( 56,141)( 57,142)
( 58,133)( 59,134)( 60,135)( 61,136)( 62,137)( 63,143)( 64,144)( 65,145)
( 66,146)( 67,147)( 68,148)( 69,149)( 70,150)( 71,151)( 72,152)( 73,153)
( 74,154)( 75,155)( 76,156)( 77,157)( 78,158)( 79,159)( 80,160)( 81,161)
( 82,162)(163,243)(164,244)(165,245)(166,246)(167,247)(168,248)(169,249)
(170,250)(171,251)(172,252)(173,253)(174,254)(175,255)(176,256)(177,257)
(178,258)(179,259)(180,260)(181,261)(182,262)(183,268)(184,269)(185,270)
(186,271)(187,272)(188,263)(189,264)(190,265)(191,266)(192,267)(193,278)
(194,279)(195,280)(196,281)(197,282)(198,273)(199,274)(200,275)(201,276)
(202,277)(203,288)(204,289)(205,290)(206,291)(207,292)(208,283)(209,284)
(210,285)(211,286)(212,287)(213,298)(214,299)(215,300)(216,301)(217,302)
(218,293)(219,294)(220,295)(221,296)(222,297)(223,303)(224,304)(225,305)
(226,306)(227,307)(228,308)(229,309)(230,310)(231,311)(232,312)(233,313)
(234,314)(235,315)(236,316)(237,317)(238,318)(239,319)(240,320)(241,321)
(242,322);
poly := sub<Sym(322)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope