include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,20,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,20,8}*640a
if this polytope has a name.
Group : SmallGroup(640,12556)
Rank : 4
Schlafli Type : {2,20,8}
Number of vertices, edges, etc : 2, 20, 80, 8
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,20,8,2} of size 1280
Vertex Figure Of :
{2,2,20,8} of size 1280
{3,2,20,8} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,20,4}*320, {2,10,8}*320
4-fold quotients : {2,20,2}*160, {2,10,4}*160
5-fold quotients : {2,4,8}*128a
8-fold quotients : {2,10,2}*80
10-fold quotients : {2,4,4}*64, {2,2,8}*64
16-fold quotients : {2,5,2}*40
20-fold quotients : {2,2,4}*32, {2,4,2}*32
40-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,20,8}*1280a, {2,40,8}*1280a, {2,40,8}*1280c, {4,20,8}*1280a, {2,20,16}*1280a, {2,20,16}*1280b
3-fold covers : {2,60,8}*1920a, {6,20,8}*1920a, {2,20,24}*1920a
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 9,12)(10,11)(14,17)(15,16)(19,22)(20,21)(24,27)(25,26)
(29,32)(30,31)(34,37)(35,36)(39,42)(40,41)(43,63)(44,67)(45,66)(46,65)(47,64)
(48,68)(49,72)(50,71)(51,70)(52,69)(53,73)(54,77)(55,76)(56,75)(57,74)(58,78)
(59,82)(60,81)(61,80)(62,79);;
s2 := ( 3,44)( 4,43)( 5,47)( 6,46)( 7,45)( 8,49)( 9,48)(10,52)(11,51)(12,50)
(13,59)(14,58)(15,62)(16,61)(17,60)(18,54)(19,53)(20,57)(21,56)(22,55)(23,64)
(24,63)(25,67)(26,66)(27,65)(28,69)(29,68)(30,72)(31,71)(32,70)(33,79)(34,78)
(35,82)(36,81)(37,80)(38,74)(39,73)(40,77)(41,76)(42,75);;
s3 := (13,18)(14,19)(15,20)(16,21)(17,22)(33,38)(34,39)(35,40)(36,41)(37,42)
(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(63,73)
(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(71,81)(72,82);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(82)!(1,2);
s1 := Sym(82)!( 4, 7)( 5, 6)( 9,12)(10,11)(14,17)(15,16)(19,22)(20,21)(24,27)
(25,26)(29,32)(30,31)(34,37)(35,36)(39,42)(40,41)(43,63)(44,67)(45,66)(46,65)
(47,64)(48,68)(49,72)(50,71)(51,70)(52,69)(53,73)(54,77)(55,76)(56,75)(57,74)
(58,78)(59,82)(60,81)(61,80)(62,79);
s2 := Sym(82)!( 3,44)( 4,43)( 5,47)( 6,46)( 7,45)( 8,49)( 9,48)(10,52)(11,51)
(12,50)(13,59)(14,58)(15,62)(16,61)(17,60)(18,54)(19,53)(20,57)(21,56)(22,55)
(23,64)(24,63)(25,67)(26,66)(27,65)(28,69)(29,68)(30,72)(31,71)(32,70)(33,79)
(34,78)(35,82)(36,81)(37,80)(38,74)(39,73)(40,77)(41,76)(42,75);
s3 := Sym(82)!(13,18)(14,19)(15,20)(16,21)(17,22)(33,38)(34,39)(35,40)(36,41)
(37,42)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)
(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(71,81)(72,82);
poly := sub<Sym(82)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope