include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {20,8,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,8,4}*1280a
if this polytope has a name.
Group : SmallGroup(1280,201129)
Rank : 4
Schlafli Type : {20,8,4}
Number of vertices, edges, etc : 20, 80, 16, 4
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {20,4,4}*640
4-fold quotients : {20,4,2}*320, {20,2,4}*320, {10,4,4}*320
5-fold quotients : {4,8,4}*256a
8-fold quotients : {20,2,2}*160, {10,2,4}*160, {10,4,2}*160
10-fold quotients : {4,4,4}*128
16-fold quotients : {5,2,4}*80, {10,2,2}*80
20-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
32-fold quotients : {5,2,2}*40
40-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 41)( 2, 45)( 3, 44)( 4, 43)( 5, 42)( 6, 46)( 7, 50)( 8, 49)
( 9, 48)( 10, 47)( 11, 51)( 12, 55)( 13, 54)( 14, 53)( 15, 52)( 16, 56)
( 17, 60)( 18, 59)( 19, 58)( 20, 57)( 21, 66)( 22, 70)( 23, 69)( 24, 68)
( 25, 67)( 26, 61)( 27, 65)( 28, 64)( 29, 63)( 30, 62)( 31, 76)( 32, 80)
( 33, 79)( 34, 78)( 35, 77)( 36, 71)( 37, 75)( 38, 74)( 39, 73)( 40, 72)
( 81,131)( 82,135)( 83,134)( 84,133)( 85,132)( 86,136)( 87,140)( 88,139)
( 89,138)( 90,137)( 91,121)( 92,125)( 93,124)( 94,123)( 95,122)( 96,126)
( 97,130)( 98,129)( 99,128)(100,127)(101,156)(102,160)(103,159)(104,158)
(105,157)(106,151)(107,155)(108,154)(109,153)(110,152)(111,146)(112,150)
(113,149)(114,148)(115,147)(116,141)(117,145)(118,144)(119,143)(120,142);;
s1 := ( 1, 83)( 2, 82)( 3, 81)( 4, 85)( 5, 84)( 6, 88)( 7, 87)( 8, 86)
( 9, 90)( 10, 89)( 11, 93)( 12, 92)( 13, 91)( 14, 95)( 15, 94)( 16, 98)
( 17, 97)( 18, 96)( 19,100)( 20, 99)( 21,108)( 22,107)( 23,106)( 24,110)
( 25,109)( 26,103)( 27,102)( 28,101)( 29,105)( 30,104)( 31,118)( 32,117)
( 33,116)( 34,120)( 35,119)( 36,113)( 37,112)( 38,111)( 39,115)( 40,114)
( 41,123)( 42,122)( 43,121)( 44,125)( 45,124)( 46,128)( 47,127)( 48,126)
( 49,130)( 50,129)( 51,133)( 52,132)( 53,131)( 54,135)( 55,134)( 56,138)
( 57,137)( 58,136)( 59,140)( 60,139)( 61,148)( 62,147)( 63,146)( 64,150)
( 65,149)( 66,143)( 67,142)( 68,141)( 69,145)( 70,144)( 71,158)( 72,157)
( 73,156)( 74,160)( 75,159)( 76,153)( 77,152)( 78,151)( 79,155)( 80,154);;
s2 := ( 11, 16)( 12, 17)( 13, 18)( 14, 19)( 15, 20)( 21, 26)( 22, 27)( 23, 28)
( 24, 29)( 25, 30)( 51, 56)( 52, 57)( 53, 58)( 54, 59)( 55, 60)( 61, 66)
( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 81,101)( 82,102)( 83,103)( 84,104)
( 85,105)( 86,106)( 87,107)( 88,108)( 89,109)( 90,110)( 91,116)( 92,117)
( 93,118)( 94,119)( 95,120)( 96,111)( 97,112)( 98,113)( 99,114)(100,115)
(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)
(129,149)(130,150)(131,156)(132,157)(133,158)(134,159)(135,160)(136,151)
(137,152)(138,153)(139,154)(140,155);;
s3 := ( 1, 41)( 2, 42)( 3, 43)( 4, 44)( 5, 45)( 6, 46)( 7, 47)( 8, 48)
( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)( 16, 56)
( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 66)( 22, 67)( 23, 68)( 24, 69)
( 25, 70)( 26, 61)( 27, 62)( 28, 63)( 29, 64)( 30, 65)( 31, 76)( 32, 77)
( 33, 78)( 34, 79)( 35, 80)( 36, 71)( 37, 72)( 38, 73)( 39, 74)( 40, 75)
( 81,121)( 82,122)( 83,123)( 84,124)( 85,125)( 86,126)( 87,127)( 88,128)
( 89,129)( 90,130)( 91,131)( 92,132)( 93,133)( 94,134)( 95,135)( 96,136)
( 97,137)( 98,138)( 99,139)(100,140)(101,146)(102,147)(103,148)(104,149)
(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)(112,157)
(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)(120,155);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(160)!( 1, 41)( 2, 45)( 3, 44)( 4, 43)( 5, 42)( 6, 46)( 7, 50)
( 8, 49)( 9, 48)( 10, 47)( 11, 51)( 12, 55)( 13, 54)( 14, 53)( 15, 52)
( 16, 56)( 17, 60)( 18, 59)( 19, 58)( 20, 57)( 21, 66)( 22, 70)( 23, 69)
( 24, 68)( 25, 67)( 26, 61)( 27, 65)( 28, 64)( 29, 63)( 30, 62)( 31, 76)
( 32, 80)( 33, 79)( 34, 78)( 35, 77)( 36, 71)( 37, 75)( 38, 74)( 39, 73)
( 40, 72)( 81,131)( 82,135)( 83,134)( 84,133)( 85,132)( 86,136)( 87,140)
( 88,139)( 89,138)( 90,137)( 91,121)( 92,125)( 93,124)( 94,123)( 95,122)
( 96,126)( 97,130)( 98,129)( 99,128)(100,127)(101,156)(102,160)(103,159)
(104,158)(105,157)(106,151)(107,155)(108,154)(109,153)(110,152)(111,146)
(112,150)(113,149)(114,148)(115,147)(116,141)(117,145)(118,144)(119,143)
(120,142);
s1 := Sym(160)!( 1, 83)( 2, 82)( 3, 81)( 4, 85)( 5, 84)( 6, 88)( 7, 87)
( 8, 86)( 9, 90)( 10, 89)( 11, 93)( 12, 92)( 13, 91)( 14, 95)( 15, 94)
( 16, 98)( 17, 97)( 18, 96)( 19,100)( 20, 99)( 21,108)( 22,107)( 23,106)
( 24,110)( 25,109)( 26,103)( 27,102)( 28,101)( 29,105)( 30,104)( 31,118)
( 32,117)( 33,116)( 34,120)( 35,119)( 36,113)( 37,112)( 38,111)( 39,115)
( 40,114)( 41,123)( 42,122)( 43,121)( 44,125)( 45,124)( 46,128)( 47,127)
( 48,126)( 49,130)( 50,129)( 51,133)( 52,132)( 53,131)( 54,135)( 55,134)
( 56,138)( 57,137)( 58,136)( 59,140)( 60,139)( 61,148)( 62,147)( 63,146)
( 64,150)( 65,149)( 66,143)( 67,142)( 68,141)( 69,145)( 70,144)( 71,158)
( 72,157)( 73,156)( 74,160)( 75,159)( 76,153)( 77,152)( 78,151)( 79,155)
( 80,154);
s2 := Sym(160)!( 11, 16)( 12, 17)( 13, 18)( 14, 19)( 15, 20)( 21, 26)( 22, 27)
( 23, 28)( 24, 29)( 25, 30)( 51, 56)( 52, 57)( 53, 58)( 54, 59)( 55, 60)
( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 81,101)( 82,102)( 83,103)
( 84,104)( 85,105)( 86,106)( 87,107)( 88,108)( 89,109)( 90,110)( 91,116)
( 92,117)( 93,118)( 94,119)( 95,120)( 96,111)( 97,112)( 98,113)( 99,114)
(100,115)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)
(128,148)(129,149)(130,150)(131,156)(132,157)(133,158)(134,159)(135,160)
(136,151)(137,152)(138,153)(139,154)(140,155);
s3 := Sym(160)!( 1, 41)( 2, 42)( 3, 43)( 4, 44)( 5, 45)( 6, 46)( 7, 47)
( 8, 48)( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)
( 16, 56)( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 66)( 22, 67)( 23, 68)
( 24, 69)( 25, 70)( 26, 61)( 27, 62)( 28, 63)( 29, 64)( 30, 65)( 31, 76)
( 32, 77)( 33, 78)( 34, 79)( 35, 80)( 36, 71)( 37, 72)( 38, 73)( 39, 74)
( 40, 75)( 81,121)( 82,122)( 83,123)( 84,124)( 85,125)( 86,126)( 87,127)
( 88,128)( 89,129)( 90,130)( 91,131)( 92,132)( 93,133)( 94,134)( 95,135)
( 96,136)( 97,137)( 98,138)( 99,139)(100,140)(101,146)(102,147)(103,148)
(104,149)(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)
(112,157)(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)
(120,155);
poly := sub<Sym(160)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope