Polytope of Type {4,8,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,8,4}*256a
if this polytope has a name.
Group : SmallGroup(256,16885)
Rank : 4
Schlafli Type : {4,8,4}
Number of vertices, edges, etc : 4, 16, 16, 4
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,8,4,2} of size 512
Vertex Figure Of :
   {2,4,8,4} of size 512
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,4,4}*128
   4-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
   8-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
   16-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,8,8}*512a, {8,8,4}*512a, {4,8,8}*512b, {8,8,4}*512b, {4,8,4}*512c, {4,8,4}*512d
   3-fold covers : {4,8,12}*768a, {12,8,4}*768a, {4,24,4}*768a
   5-fold covers : {4,8,20}*1280a, {20,8,4}*1280a, {4,40,4}*1280a
   7-fold covers : {4,8,28}*1792a, {28,8,4}*1792a, {4,56,4}*1792a
Permutation Representation (GAP) :
s0 := ( 5, 6)( 7, 8)(13,14)(15,16);;
s1 := ( 3, 4)( 5, 6)( 9,13)(10,14)(11,16)(12,15);;
s2 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15);;
s3 := ( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(16)!( 5, 6)( 7, 8)(13,14)(15,16);
s1 := Sym(16)!( 3, 4)( 5, 6)( 9,13)(10,14)(11,16)(12,15);
s2 := Sym(16)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15);
s3 := Sym(16)!( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15);
poly := sub<Sym(16)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 >; 
 
References : None.
to this polytope