include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,40,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,40,4}*1280b
if this polytope has a name.
Group : SmallGroup(1280,201204)
Rank : 4
Schlafli Type : {4,40,4}
Number of vertices, edges, etc : 4, 80, 80, 4
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,20,4}*640, {2,40,4}*640b
4-fold quotients : {2,20,4}*320, {4,20,2}*320, {4,10,4}*320
5-fold quotients : {4,8,4}*256b
8-fold quotients : {2,20,2}*160, {2,10,4}*160, {4,10,2}*160
10-fold quotients : {4,4,4}*128, {2,8,4}*128b
16-fold quotients : {2,10,2}*80
20-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
32-fold quotients : {2,5,2}*40
40-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 41)( 2, 42)( 3, 43)( 4, 44)( 5, 45)( 6, 46)( 7, 47)( 8, 48)
( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)( 16, 56)
( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 61)( 22, 62)( 23, 63)( 24, 64)
( 25, 65)( 26, 66)( 27, 67)( 28, 68)( 29, 69)( 30, 70)( 31, 71)( 32, 72)
( 33, 73)( 34, 74)( 35, 75)( 36, 76)( 37, 77)( 38, 78)( 39, 79)( 40, 80)
( 81,131)( 82,132)( 83,133)( 84,134)( 85,135)( 86,136)( 87,137)( 88,138)
( 89,139)( 90,140)( 91,121)( 92,122)( 93,123)( 94,124)( 95,125)( 96,126)
( 97,127)( 98,128)( 99,129)(100,130)(101,151)(102,152)(103,153)(104,154)
(105,155)(106,156)(107,157)(108,158)(109,159)(110,160)(111,141)(112,142)
(113,143)(114,144)(115,145)(116,146)(117,147)(118,148)(119,149)(120,150);;
s1 := ( 1, 81)( 2, 85)( 3, 84)( 4, 83)( 5, 82)( 6, 86)( 7, 90)( 8, 89)
( 9, 88)( 10, 87)( 11, 91)( 12, 95)( 13, 94)( 14, 93)( 15, 92)( 16, 96)
( 17,100)( 18, 99)( 19, 98)( 20, 97)( 21,106)( 22,110)( 23,109)( 24,108)
( 25,107)( 26,101)( 27,105)( 28,104)( 29,103)( 30,102)( 31,116)( 32,120)
( 33,119)( 34,118)( 35,117)( 36,111)( 37,115)( 38,114)( 39,113)( 40,112)
( 41,121)( 42,125)( 43,124)( 44,123)( 45,122)( 46,126)( 47,130)( 48,129)
( 49,128)( 50,127)( 51,131)( 52,135)( 53,134)( 54,133)( 55,132)( 56,136)
( 57,140)( 58,139)( 59,138)( 60,137)( 61,146)( 62,150)( 63,149)( 64,148)
( 65,147)( 66,141)( 67,145)( 68,144)( 69,143)( 70,142)( 71,156)( 72,160)
( 73,159)( 74,158)( 75,157)( 76,151)( 77,155)( 78,154)( 79,153)( 80,152);;
s2 := ( 1, 3)( 4, 5)( 6, 8)( 9, 10)( 11, 13)( 14, 15)( 16, 18)( 19, 20)
( 21, 28)( 22, 27)( 23, 26)( 24, 30)( 25, 29)( 31, 38)( 32, 37)( 33, 36)
( 34, 40)( 35, 39)( 41, 43)( 44, 45)( 46, 48)( 49, 50)( 51, 53)( 54, 55)
( 56, 58)( 59, 60)( 61, 68)( 62, 67)( 63, 66)( 64, 70)( 65, 69)( 71, 78)
( 72, 77)( 73, 76)( 74, 80)( 75, 79)( 81,103)( 82,102)( 83,101)( 84,105)
( 85,104)( 86,108)( 87,107)( 88,106)( 89,110)( 90,109)( 91,113)( 92,112)
( 93,111)( 94,115)( 95,114)( 96,118)( 97,117)( 98,116)( 99,120)(100,119)
(121,143)(122,142)(123,141)(124,145)(125,144)(126,148)(127,147)(128,146)
(129,150)(130,149)(131,153)(132,152)(133,151)(134,155)(135,154)(136,158)
(137,157)(138,156)(139,160)(140,159);;
s3 := ( 1, 41)( 2, 42)( 3, 43)( 4, 44)( 5, 45)( 6, 46)( 7, 47)( 8, 48)
( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)( 16, 56)
( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 66)( 22, 67)( 23, 68)( 24, 69)
( 25, 70)( 26, 61)( 27, 62)( 28, 63)( 29, 64)( 30, 65)( 31, 76)( 32, 77)
( 33, 78)( 34, 79)( 35, 80)( 36, 71)( 37, 72)( 38, 73)( 39, 74)( 40, 75)
( 81,121)( 82,122)( 83,123)( 84,124)( 85,125)( 86,126)( 87,127)( 88,128)
( 89,129)( 90,130)( 91,131)( 92,132)( 93,133)( 94,134)( 95,135)( 96,136)
( 97,137)( 98,138)( 99,139)(100,140)(101,146)(102,147)(103,148)(104,149)
(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)(112,157)
(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)(120,155);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s1*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(160)!( 1, 41)( 2, 42)( 3, 43)( 4, 44)( 5, 45)( 6, 46)( 7, 47)
( 8, 48)( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)
( 16, 56)( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 61)( 22, 62)( 23, 63)
( 24, 64)( 25, 65)( 26, 66)( 27, 67)( 28, 68)( 29, 69)( 30, 70)( 31, 71)
( 32, 72)( 33, 73)( 34, 74)( 35, 75)( 36, 76)( 37, 77)( 38, 78)( 39, 79)
( 40, 80)( 81,131)( 82,132)( 83,133)( 84,134)( 85,135)( 86,136)( 87,137)
( 88,138)( 89,139)( 90,140)( 91,121)( 92,122)( 93,123)( 94,124)( 95,125)
( 96,126)( 97,127)( 98,128)( 99,129)(100,130)(101,151)(102,152)(103,153)
(104,154)(105,155)(106,156)(107,157)(108,158)(109,159)(110,160)(111,141)
(112,142)(113,143)(114,144)(115,145)(116,146)(117,147)(118,148)(119,149)
(120,150);
s1 := Sym(160)!( 1, 81)( 2, 85)( 3, 84)( 4, 83)( 5, 82)( 6, 86)( 7, 90)
( 8, 89)( 9, 88)( 10, 87)( 11, 91)( 12, 95)( 13, 94)( 14, 93)( 15, 92)
( 16, 96)( 17,100)( 18, 99)( 19, 98)( 20, 97)( 21,106)( 22,110)( 23,109)
( 24,108)( 25,107)( 26,101)( 27,105)( 28,104)( 29,103)( 30,102)( 31,116)
( 32,120)( 33,119)( 34,118)( 35,117)( 36,111)( 37,115)( 38,114)( 39,113)
( 40,112)( 41,121)( 42,125)( 43,124)( 44,123)( 45,122)( 46,126)( 47,130)
( 48,129)( 49,128)( 50,127)( 51,131)( 52,135)( 53,134)( 54,133)( 55,132)
( 56,136)( 57,140)( 58,139)( 59,138)( 60,137)( 61,146)( 62,150)( 63,149)
( 64,148)( 65,147)( 66,141)( 67,145)( 68,144)( 69,143)( 70,142)( 71,156)
( 72,160)( 73,159)( 74,158)( 75,157)( 76,151)( 77,155)( 78,154)( 79,153)
( 80,152);
s2 := Sym(160)!( 1, 3)( 4, 5)( 6, 8)( 9, 10)( 11, 13)( 14, 15)( 16, 18)
( 19, 20)( 21, 28)( 22, 27)( 23, 26)( 24, 30)( 25, 29)( 31, 38)( 32, 37)
( 33, 36)( 34, 40)( 35, 39)( 41, 43)( 44, 45)( 46, 48)( 49, 50)( 51, 53)
( 54, 55)( 56, 58)( 59, 60)( 61, 68)( 62, 67)( 63, 66)( 64, 70)( 65, 69)
( 71, 78)( 72, 77)( 73, 76)( 74, 80)( 75, 79)( 81,103)( 82,102)( 83,101)
( 84,105)( 85,104)( 86,108)( 87,107)( 88,106)( 89,110)( 90,109)( 91,113)
( 92,112)( 93,111)( 94,115)( 95,114)( 96,118)( 97,117)( 98,116)( 99,120)
(100,119)(121,143)(122,142)(123,141)(124,145)(125,144)(126,148)(127,147)
(128,146)(129,150)(130,149)(131,153)(132,152)(133,151)(134,155)(135,154)
(136,158)(137,157)(138,156)(139,160)(140,159);
s3 := Sym(160)!( 1, 41)( 2, 42)( 3, 43)( 4, 44)( 5, 45)( 6, 46)( 7, 47)
( 8, 48)( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)
( 16, 56)( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 66)( 22, 67)( 23, 68)
( 24, 69)( 25, 70)( 26, 61)( 27, 62)( 28, 63)( 29, 64)( 30, 65)( 31, 76)
( 32, 77)( 33, 78)( 34, 79)( 35, 80)( 36, 71)( 37, 72)( 38, 73)( 39, 74)
( 40, 75)( 81,121)( 82,122)( 83,123)( 84,124)( 85,125)( 86,126)( 87,127)
( 88,128)( 89,129)( 90,130)( 91,131)( 92,132)( 93,133)( 94,134)( 95,135)
( 96,136)( 97,137)( 98,138)( 99,139)(100,140)(101,146)(102,147)(103,148)
(104,149)(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)
(112,157)(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)
(120,155);
poly := sub<Sym(160)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s1*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope