include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,40,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,40,4}*640b
if this polytope has a name.
Group : SmallGroup(640,12511)
Rank : 4
Schlafli Type : {2,40,4}
Number of vertices, edges, etc : 2, 40, 80, 4
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,40,4,2} of size 1280
Vertex Figure Of :
{2,2,40,4} of size 1280
{3,2,40,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,20,4}*320
4-fold quotients : {2,20,2}*160, {2,10,4}*160
5-fold quotients : {2,8,4}*128b
8-fold quotients : {2,10,2}*80
10-fold quotients : {2,4,4}*64
16-fold quotients : {2,5,2}*40
20-fold quotients : {2,2,4}*32, {2,4,2}*32
40-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,40,4}*1280a, {2,40,8}*1280a, {2,40,8}*1280d, {4,40,4}*1280b
3-fold covers : {2,120,4}*1920b, {6,40,4}*1920b, {2,40,12}*1920b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 9,12)(10,11)(13,18)(14,22)(15,21)(16,20)(17,19)(24,27)
(25,26)(29,32)(30,31)(33,38)(34,42)(35,41)(36,40)(37,39)(43,78)(44,82)(45,81)
(46,80)(47,79)(48,73)(49,77)(50,76)(51,75)(52,74)(53,63)(54,67)(55,66)(56,65)
(57,64)(58,68)(59,72)(60,71)(61,70)(62,69);;
s2 := ( 3,44)( 4,43)( 5,47)( 6,46)( 7,45)( 8,49)( 9,48)(10,52)(11,51)(12,50)
(13,54)(14,53)(15,57)(16,56)(17,55)(18,59)(19,58)(20,62)(21,61)(22,60)(23,69)
(24,68)(25,72)(26,71)(27,70)(28,64)(29,63)(30,67)(31,66)(32,65)(33,79)(34,78)
(35,82)(36,81)(37,80)(38,74)(39,73)(40,77)(41,76)(42,75);;
s3 := (23,28)(24,29)(25,30)(26,31)(27,32)(33,38)(34,39)(35,40)(36,41)(37,42)
(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(63,78)
(64,79)(65,80)(66,81)(67,82)(68,73)(69,74)(70,75)(71,76)(72,77);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3, s1*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(82)!(1,2);
s1 := Sym(82)!( 4, 7)( 5, 6)( 9,12)(10,11)(13,18)(14,22)(15,21)(16,20)(17,19)
(24,27)(25,26)(29,32)(30,31)(33,38)(34,42)(35,41)(36,40)(37,39)(43,78)(44,82)
(45,81)(46,80)(47,79)(48,73)(49,77)(50,76)(51,75)(52,74)(53,63)(54,67)(55,66)
(56,65)(57,64)(58,68)(59,72)(60,71)(61,70)(62,69);
s2 := Sym(82)!( 3,44)( 4,43)( 5,47)( 6,46)( 7,45)( 8,49)( 9,48)(10,52)(11,51)
(12,50)(13,54)(14,53)(15,57)(16,56)(17,55)(18,59)(19,58)(20,62)(21,61)(22,60)
(23,69)(24,68)(25,72)(26,71)(27,70)(28,64)(29,63)(30,67)(31,66)(32,65)(33,79)
(34,78)(35,82)(36,81)(37,80)(38,74)(39,73)(40,77)(41,76)(42,75);
s3 := Sym(82)!(23,28)(24,29)(25,30)(26,31)(27,32)(33,38)(34,39)(35,40)(36,41)
(37,42)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)
(63,78)(64,79)(65,80)(66,81)(67,82)(68,73)(69,74)(70,75)(71,76)(72,77);
poly := sub<Sym(82)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3,
s1*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope