Polytope of Type {2,40,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,40,4}*1280b
if this polytope has a name.
Group : SmallGroup(1280,323570)
Rank : 4
Schlafli Type : {2,40,4}
Number of vertices, edges, etc : 2, 80, 160, 8
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,20,4}*640
   4-fold quotients : {2,20,4}*320
   5-fold quotients : {2,8,4}*256b
   8-fold quotients : {2,20,2}*160, {2,10,4}*160
   10-fold quotients : {2,4,4}*128
   16-fold quotients : {2,10,2}*80
   20-fold quotients : {2,4,4}*64
   32-fold quotients : {2,5,2}*40
   40-fold quotients : {2,2,4}*32, {2,4,2}*32
   80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,43)( 4,47)( 5,46)( 6,45)( 7,44)( 8,48)( 9,52)(10,51)(11,50)(12,49)
(13,53)(14,57)(15,56)(16,55)(17,54)(18,58)(19,62)(20,61)(21,60)(22,59)(23,78)
(24,82)(25,81)(26,80)(27,79)(28,73)(29,77)(30,76)(31,75)(32,74)(33,68)(34,72)
(35,71)(36,70)(37,69)(38,63)(39,67)(40,66)(41,65)(42,64);;
s2 := ( 3, 4)( 5, 7)( 8, 9)(10,12)(13,19)(14,18)(15,22)(16,21)(17,20)(23,24)
(25,27)(28,29)(30,32)(33,39)(34,38)(35,42)(36,41)(37,40)(43,64)(44,63)(45,67)
(46,66)(47,65)(48,69)(49,68)(50,72)(51,71)(52,70)(53,79)(54,78)(55,82)(56,81)
(57,80)(58,74)(59,73)(60,77)(61,76)(62,75);;
s3 := ( 3,43)( 4,44)( 5,45)( 6,46)( 7,47)( 8,48)( 9,49)(10,50)(11,51)(12,52)
(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)
(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)
(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(82)!(1,2);
s1 := Sym(82)!( 3,43)( 4,47)( 5,46)( 6,45)( 7,44)( 8,48)( 9,52)(10,51)(11,50)
(12,49)(13,53)(14,57)(15,56)(16,55)(17,54)(18,58)(19,62)(20,61)(21,60)(22,59)
(23,78)(24,82)(25,81)(26,80)(27,79)(28,73)(29,77)(30,76)(31,75)(32,74)(33,68)
(34,72)(35,71)(36,70)(37,69)(38,63)(39,67)(40,66)(41,65)(42,64);
s2 := Sym(82)!( 3, 4)( 5, 7)( 8, 9)(10,12)(13,19)(14,18)(15,22)(16,21)(17,20)
(23,24)(25,27)(28,29)(30,32)(33,39)(34,38)(35,42)(36,41)(37,40)(43,64)(44,63)
(45,67)(46,66)(47,65)(48,69)(49,68)(50,72)(51,71)(52,70)(53,79)(54,78)(55,82)
(56,81)(57,80)(58,74)(59,73)(60,77)(61,76)(62,75);
s3 := Sym(82)!( 3,43)( 4,44)( 5,45)( 6,46)( 7,47)( 8,48)( 9,49)(10,50)(11,51)
(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)
(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)
(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82);
poly := sub<Sym(82)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1 >; 
 

to this polytope