include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,4}*128
if this polytope has a name.
Group : SmallGroup(128,1755)
Rank : 4
Schlafli Type : {2,4,4}
Number of vertices, edges, etc : 2, 8, 16, 8
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,4,2} of size 256
{2,4,4,3} of size 384
{2,4,4,4} of size 512
{2,4,4,6} of size 768
{2,4,4,3} of size 768
{2,4,4,6} of size 768
{2,4,4,6} of size 768
{2,4,4,9} of size 1152
{2,4,4,10} of size 1280
{2,4,4,14} of size 1792
{2,4,4,15} of size 1920
Vertex Figure Of :
{2,2,4,4} of size 256
{3,2,4,4} of size 384
{5,2,4,4} of size 640
{6,2,4,4} of size 768
{7,2,4,4} of size 896
{9,2,4,4} of size 1152
{10,2,4,4} of size 1280
{11,2,4,4} of size 1408
{13,2,4,4} of size 1664
{14,2,4,4} of size 1792
{15,2,4,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,4}*64
4-fold quotients : {2,2,4}*32, {2,4,2}*32
8-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,8}*256a, {2,8,4}*256a, {4,4,4}*256a, {2,4,4}*256, {2,4,8}*256b, {2,8,4}*256b
3-fold covers : {2,4,12}*384a, {2,12,4}*384a, {6,4,4}*384a
4-fold covers : {2,8,8}*512a, {4,4,4}*512a, {4,4,8}*512a, {8,4,4}*512b, {8,4,4}*512c, {4,8,4}*512b, {4,8,4}*512d, {2,4,8}*512a, {2,8,4}*512a, {2,8,8}*512b, {2,8,8}*512c, {2,8,8}*512d, {2,4,16}*512a, {2,16,4}*512a, {2,4,16}*512b, {2,16,4}*512b, {4,4,4}*512c, {4,8,4}*512g, {4,8,4}*512h, {4,4,8}*512d, {2,4,4}*512, {2,4,8}*512b, {2,8,4}*512b, {2,4,8}*512c, {2,4,8}*512d, {2,8,4}*512c, {2,8,4}*512d, {2,8,8}*512e, {2,8,8}*512f, {2,8,8}*512g, {2,8,8}*512h
5-fold covers : {2,4,20}*640, {2,20,4}*640, {10,4,4}*640
6-fold covers : {6,4,8}*768a, {6,8,4}*768a, {2,8,12}*768a, {2,12,8}*768a, {2,4,24}*768a, {2,24,4}*768a, {12,4,4}*768a, {4,12,4}*768a, {4,4,12}*768b, {6,4,4}*768a, {6,4,8}*768b, {6,8,4}*768b, {2,4,12}*768a, {2,4,24}*768b, {2,12,4}*768a, {2,24,4}*768b, {2,8,12}*768b, {2,12,8}*768b
7-fold covers : {2,4,28}*896, {2,28,4}*896, {14,4,4}*896
9-fold covers : {18,4,4}*1152a, {2,4,36}*1152a, {2,36,4}*1152a, {6,4,12}*1152a, {6,12,4}*1152a, {6,12,4}*1152b, {6,12,4}*1152c, {2,12,12}*1152a, {2,12,12}*1152b, {2,12,12}*1152c, {2,4,4}*1152, {2,4,12}*1152, {2,12,4}*1152, {6,4,4}*1152a
10-fold covers : {10,4,8}*1280a, {10,8,4}*1280a, {2,8,20}*1280a, {2,20,8}*1280a, {2,4,40}*1280a, {2,40,4}*1280a, {20,4,4}*1280a, {4,20,4}*1280a, {4,4,20}*1280b, {10,4,4}*1280, {10,4,8}*1280b, {10,8,4}*1280b, {2,4,20}*1280a, {2,4,40}*1280b, {2,20,4}*1280a, {2,40,4}*1280b, {2,8,20}*1280b, {2,20,8}*1280b
11-fold covers : {22,4,4}*1408, {2,4,44}*1408, {2,44,4}*1408
13-fold covers : {26,4,4}*1664, {2,4,52}*1664, {2,52,4}*1664
14-fold covers : {14,4,8}*1792a, {14,8,4}*1792a, {2,8,28}*1792a, {2,28,8}*1792a, {2,4,56}*1792a, {2,56,4}*1792a, {28,4,4}*1792a, {4,28,4}*1792a, {4,4,28}*1792b, {14,4,4}*1792, {14,4,8}*1792b, {14,8,4}*1792b, {2,4,28}*1792, {2,4,56}*1792b, {2,28,4}*1792, {2,56,4}*1792b, {2,8,28}*1792b, {2,28,8}*1792b
15-fold covers : {30,4,4}*1920a, {2,4,60}*1920a, {2,60,4}*1920a, {10,4,12}*1920a, {10,12,4}*1920a, {6,4,20}*1920a, {6,20,4}*1920a, {2,12,20}*1920a, {2,20,12}*1920a
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 8)( 9,12)(11,14)(13,16)(15,17);;
s2 := ( 3, 4)( 5, 7)( 6, 9)( 8,11)(10,13)(12,15)(14,17)(16,18);;
s3 := ( 4, 6)( 5, 8)( 7,10)(11,14)(13,17)(15,16);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(18)!(1,2);
s1 := Sym(18)!( 4, 5)( 6, 8)( 9,12)(11,14)(13,16)(15,17);
s2 := Sym(18)!( 3, 4)( 5, 7)( 6, 9)( 8,11)(10,13)(12,15)(14,17)(16,18);
s3 := Sym(18)!( 4, 6)( 5, 8)( 7,10)(11,14)(13,17)(15,16);
poly := sub<Sym(18)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 >;
to this polytope