Polytope of Type {5,2,4,4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,4,4,4}*1280
if this polytope has a name.
Group : SmallGroup(1280,336970)
Rank : 6
Schlafli Type : {5,2,4,4,4}
Number of vertices, edges, etc : 5, 5, 4, 8, 8, 4
Order of s0s1s2s3s4s5 : 20
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,2,2,4,4}*640, {5,2,4,4,2}*640, {5,2,4,2,4}*640
   4-fold quotients : {5,2,2,2,4}*320, {5,2,2,4,2}*320, {5,2,4,2,2}*320
   8-fold quotients : {5,2,2,2,2}*160
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 6,14)( 7,15)( 8,16)( 9,17)(10,18)(11,19)(12,20)(13,21)(22,30)(23,31)
(24,32)(25,33)(26,34)(27,35)(28,36)(29,37)(38,46)(39,47)(40,48)(41,49)(42,50)
(43,51)(44,52)(45,53)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)
(61,69);;
s3 := (14,18)(15,19)(16,20)(17,21)(22,24)(23,25)(26,28)(27,29)(30,36)(31,37)
(32,34)(33,35)(38,42)(39,43)(40,44)(41,45)(54,60)(55,61)(56,58)(57,59)(62,64)
(63,65)(66,68)(67,69);;
s4 := ( 6,22)( 7,23)( 8,24)( 9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)
(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(38,54)(39,55)(40,56)(41,57)(42,58)
(43,59)(44,60)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,67)(52,68)
(53,69);;
s5 := ( 6,46)( 7,47)( 8,48)( 9,49)(10,50)(11,51)(12,52)(13,53)(14,38)(15,39)
(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,63)(23,62)(24,65)(25,64)(26,67)
(27,66)(28,69)(29,68)(30,55)(31,54)(32,57)(33,56)(34,59)(35,58)(36,61)
(37,60);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s5*s4*s3*s4*s5*s4, s4*s5*s4*s5*s4*s5*s4*s5, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(69)!(2,3)(4,5);
s1 := Sym(69)!(1,2)(3,4);
s2 := Sym(69)!( 6,14)( 7,15)( 8,16)( 9,17)(10,18)(11,19)(12,20)(13,21)(22,30)
(23,31)(24,32)(25,33)(26,34)(27,35)(28,36)(29,37)(38,46)(39,47)(40,48)(41,49)
(42,50)(43,51)(44,52)(45,53)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)
(61,69);
s3 := Sym(69)!(14,18)(15,19)(16,20)(17,21)(22,24)(23,25)(26,28)(27,29)(30,36)
(31,37)(32,34)(33,35)(38,42)(39,43)(40,44)(41,45)(54,60)(55,61)(56,58)(57,59)
(62,64)(63,65)(66,68)(67,69);
s4 := Sym(69)!( 6,22)( 7,23)( 8,24)( 9,25)(10,26)(11,27)(12,28)(13,29)(14,30)
(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(38,54)(39,55)(40,56)(41,57)
(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,67)(52,68)
(53,69);
s5 := Sym(69)!( 6,46)( 7,47)( 8,48)( 9,49)(10,50)(11,51)(12,52)(13,53)(14,38)
(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,63)(23,62)(24,65)(25,64)
(26,67)(27,66)(28,69)(29,68)(30,55)(31,54)(32,57)(33,56)(34,59)(35,58)(36,61)
(37,60);
poly := sub<Sym(69)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s3*s4*s5*s4*s3*s4*s5*s4, 
s4*s5*s4*s5*s4*s5*s4*s5, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope