include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,2,4,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,4,4}*320
if this polytope has a name.
Group : SmallGroup(320,1260)
Rank : 5
Schlafli Type : {5,2,4,4}
Number of vertices, edges, etc : 5, 5, 4, 8, 4
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{5,2,4,4,2} of size 640
{5,2,4,4,4} of size 1280
{5,2,4,4,6} of size 1920
{5,2,4,4,3} of size 1920
Vertex Figure Of :
{2,5,2,4,4} of size 640
{3,5,2,4,4} of size 1920
{5,5,2,4,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,2,4}*160, {5,2,4,2}*160
4-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
2-fold covers : {5,2,4,8}*640a, {5,2,8,4}*640a, {5,2,4,8}*640b, {5,2,8,4}*640b, {5,2,4,4}*640, {10,2,4,4}*640
3-fold covers : {5,2,4,12}*960a, {5,2,12,4}*960a, {15,2,4,4}*960
4-fold covers : {5,2,4,8}*1280a, {5,2,8,4}*1280a, {5,2,8,8}*1280a, {5,2,8,8}*1280b, {5,2,8,8}*1280c, {5,2,8,8}*1280d, {5,2,4,16}*1280a, {5,2,16,4}*1280a, {5,2,4,16}*1280b, {5,2,16,4}*1280b, {5,2,4,4}*1280, {5,2,4,8}*1280b, {5,2,8,4}*1280b, {10,4,4,4}*1280, {20,2,4,4}*1280, {10,2,4,8}*1280a, {10,2,8,4}*1280a, {10,2,4,8}*1280b, {10,2,8,4}*1280b, {10,2,4,4}*1280
5-fold covers : {25,2,4,4}*1600, {5,2,4,20}*1600, {5,2,20,4}*1600, {5,10,4,4}*1600
6-fold covers : {15,2,4,8}*1920a, {15,2,8,4}*1920a, {5,2,8,12}*1920a, {5,2,12,8}*1920a, {5,2,4,24}*1920a, {5,2,24,4}*1920a, {15,2,4,8}*1920b, {15,2,8,4}*1920b, {5,2,8,12}*1920b, {5,2,12,8}*1920b, {5,2,4,24}*1920b, {5,2,24,4}*1920b, {15,2,4,4}*1920, {5,2,4,12}*1920a, {5,2,12,4}*1920a, {30,2,4,4}*1920, {10,6,4,4}*1920, {10,2,4,12}*1920a, {10,2,12,4}*1920a
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 7, 8)( 9,11);;
s3 := ( 6, 7)( 8,10)( 9,12)(11,13);;
s4 := ( 7, 9)( 8,11);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(13)!(2,3)(4,5);
s1 := Sym(13)!(1,2)(3,4);
s2 := Sym(13)!( 7, 8)( 9,11);
s3 := Sym(13)!( 6, 7)( 8,10)( 9,12)(11,13);
s4 := Sym(13)!( 7, 9)( 8,11);
poly := sub<Sym(13)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope