include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,80}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,80}*1280c
if this polytope has a name.
Group : SmallGroup(1280,82994)
Rank : 3
Schlafli Type : {8,80}
Number of vertices, edges, etc : 8, 320, 80
Order of s0s1s2 : 80
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,40}*640a, {4,80}*640a
4-fold quotients : {4,40}*320a, {8,20}*320b, {2,80}*320
5-fold quotients : {8,16}*256c
8-fold quotients : {4,20}*160, {2,40}*160
10-fold quotients : {8,8}*128a, {4,16}*128a
16-fold quotients : {2,20}*80, {4,10}*80
20-fold quotients : {4,8}*64a, {8,4}*64b, {2,16}*64
32-fold quotients : {2,10}*40
40-fold quotients : {4,4}*32, {2,8}*32
64-fold quotients : {2,5}*20
80-fold quotients : {2,4}*16, {4,2}*16
160-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,161)( 2,162)( 3,163)( 4,164)( 5,165)( 6,166)( 7,167)( 8,168)
( 9,169)( 10,170)( 11,171)( 12,172)( 13,173)( 14,174)( 15,175)( 16,176)
( 17,177)( 18,178)( 19,179)( 20,180)( 21,181)( 22,182)( 23,183)( 24,184)
( 25,185)( 26,186)( 27,187)( 28,188)( 29,189)( 30,190)( 31,191)( 32,192)
( 33,193)( 34,194)( 35,195)( 36,196)( 37,197)( 38,198)( 39,199)( 40,200)
( 41,211)( 42,212)( 43,213)( 44,214)( 45,215)( 46,216)( 47,217)( 48,218)
( 49,219)( 50,220)( 51,201)( 52,202)( 53,203)( 54,204)( 55,205)( 56,206)
( 57,207)( 58,208)( 59,209)( 60,210)( 61,231)( 62,232)( 63,233)( 64,234)
( 65,235)( 66,236)( 67,237)( 68,238)( 69,239)( 70,240)( 71,221)( 72,222)
( 73,223)( 74,224)( 75,225)( 76,226)( 77,227)( 78,228)( 79,229)( 80,230)
( 81,251)( 82,252)( 83,253)( 84,254)( 85,255)( 86,256)( 87,257)( 88,258)
( 89,259)( 90,260)( 91,241)( 92,242)( 93,243)( 94,244)( 95,245)( 96,246)
( 97,247)( 98,248)( 99,249)(100,250)(101,271)(102,272)(103,273)(104,274)
(105,275)(106,276)(107,277)(108,278)(109,279)(110,280)(111,261)(112,262)
(113,263)(114,264)(115,265)(116,266)(117,267)(118,268)(119,269)(120,270)
(121,281)(122,282)(123,283)(124,284)(125,285)(126,286)(127,287)(128,288)
(129,289)(130,290)(131,291)(132,292)(133,293)(134,294)(135,295)(136,296)
(137,297)(138,298)(139,299)(140,300)(141,301)(142,302)(143,303)(144,304)
(145,305)(146,306)(147,307)(148,308)(149,309)(150,310)(151,311)(152,312)
(153,313)(154,314)(155,315)(156,316)(157,317)(158,318)(159,319)(160,320)
(321,481)(322,482)(323,483)(324,484)(325,485)(326,486)(327,487)(328,488)
(329,489)(330,490)(331,491)(332,492)(333,493)(334,494)(335,495)(336,496)
(337,497)(338,498)(339,499)(340,500)(341,501)(342,502)(343,503)(344,504)
(345,505)(346,506)(347,507)(348,508)(349,509)(350,510)(351,511)(352,512)
(353,513)(354,514)(355,515)(356,516)(357,517)(358,518)(359,519)(360,520)
(361,531)(362,532)(363,533)(364,534)(365,535)(366,536)(367,537)(368,538)
(369,539)(370,540)(371,521)(372,522)(373,523)(374,524)(375,525)(376,526)
(377,527)(378,528)(379,529)(380,530)(381,551)(382,552)(383,553)(384,554)
(385,555)(386,556)(387,557)(388,558)(389,559)(390,560)(391,541)(392,542)
(393,543)(394,544)(395,545)(396,546)(397,547)(398,548)(399,549)(400,550)
(401,571)(402,572)(403,573)(404,574)(405,575)(406,576)(407,577)(408,578)
(409,579)(410,580)(411,561)(412,562)(413,563)(414,564)(415,565)(416,566)
(417,567)(418,568)(419,569)(420,570)(421,591)(422,592)(423,593)(424,594)
(425,595)(426,596)(427,597)(428,598)(429,599)(430,600)(431,581)(432,582)
(433,583)(434,584)(435,585)(436,586)(437,587)(438,588)(439,589)(440,590)
(441,601)(442,602)(443,603)(444,604)(445,605)(446,606)(447,607)(448,608)
(449,609)(450,610)(451,611)(452,612)(453,613)(454,614)(455,615)(456,616)
(457,617)(458,618)(459,619)(460,620)(461,621)(462,622)(463,623)(464,624)
(465,625)(466,626)(467,627)(468,628)(469,629)(470,630)(471,631)(472,632)
(473,633)(474,634)(475,635)(476,636)(477,637)(478,638)(479,639)(480,640);;
s1 := ( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 31, 36)( 32, 40)( 33, 39)
( 34, 38)( 35, 37)( 41, 51)( 42, 55)( 43, 54)( 44, 53)( 45, 52)( 46, 56)
( 47, 60)( 48, 59)( 49, 58)( 50, 57)( 61, 76)( 62, 80)( 63, 79)( 64, 78)
( 65, 77)( 66, 71)( 67, 75)( 68, 74)( 69, 73)( 70, 72)( 81,101)( 82,105)
( 83,104)( 84,103)( 85,102)( 86,106)( 87,110)( 88,109)( 89,108)( 90,107)
( 91,111)( 92,115)( 93,114)( 94,113)( 95,112)( 96,116)( 97,120)( 98,119)
( 99,118)(100,117)(121,151)(122,155)(123,154)(124,153)(125,152)(126,156)
(127,160)(128,159)(129,158)(130,157)(131,141)(132,145)(133,144)(134,143)
(135,142)(136,146)(137,150)(138,149)(139,148)(140,147)(161,201)(162,205)
(163,204)(164,203)(165,202)(166,206)(167,210)(168,209)(169,208)(170,207)
(171,211)(172,215)(173,214)(174,213)(175,212)(176,216)(177,220)(178,219)
(179,218)(180,217)(181,226)(182,230)(183,229)(184,228)(185,227)(186,221)
(187,225)(188,224)(189,223)(190,222)(191,236)(192,240)(193,239)(194,238)
(195,237)(196,231)(197,235)(198,234)(199,233)(200,232)(241,301)(242,305)
(243,304)(244,303)(245,302)(246,306)(247,310)(248,309)(249,308)(250,307)
(251,311)(252,315)(253,314)(254,313)(255,312)(256,316)(257,320)(258,319)
(259,318)(260,317)(261,281)(262,285)(263,284)(264,283)(265,282)(266,286)
(267,290)(268,289)(269,288)(270,287)(271,291)(272,295)(273,294)(274,293)
(275,292)(276,296)(277,300)(278,299)(279,298)(280,297)(321,401)(322,405)
(323,404)(324,403)(325,402)(326,406)(327,410)(328,409)(329,408)(330,407)
(331,411)(332,415)(333,414)(334,413)(335,412)(336,416)(337,420)(338,419)
(339,418)(340,417)(341,426)(342,430)(343,429)(344,428)(345,427)(346,421)
(347,425)(348,424)(349,423)(350,422)(351,436)(352,440)(353,439)(354,438)
(355,437)(356,431)(357,435)(358,434)(359,433)(360,432)(361,451)(362,455)
(363,454)(364,453)(365,452)(366,456)(367,460)(368,459)(369,458)(370,457)
(371,441)(372,445)(373,444)(374,443)(375,442)(376,446)(377,450)(378,449)
(379,448)(380,447)(381,476)(382,480)(383,479)(384,478)(385,477)(386,471)
(387,475)(388,474)(389,473)(390,472)(391,466)(392,470)(393,469)(394,468)
(395,467)(396,461)(397,465)(398,464)(399,463)(400,462)(481,611)(482,615)
(483,614)(484,613)(485,612)(486,616)(487,620)(488,619)(489,618)(490,617)
(491,601)(492,605)(493,604)(494,603)(495,602)(496,606)(497,610)(498,609)
(499,608)(500,607)(501,636)(502,640)(503,639)(504,638)(505,637)(506,631)
(507,635)(508,634)(509,633)(510,632)(511,626)(512,630)(513,629)(514,628)
(515,627)(516,621)(517,625)(518,624)(519,623)(520,622)(521,571)(522,575)
(523,574)(524,573)(525,572)(526,576)(527,580)(528,579)(529,578)(530,577)
(531,561)(532,565)(533,564)(534,563)(535,562)(536,566)(537,570)(538,569)
(539,568)(540,567)(541,596)(542,600)(543,599)(544,598)(545,597)(546,591)
(547,595)(548,594)(549,593)(550,592)(551,586)(552,590)(553,589)(554,588)
(555,587)(556,581)(557,585)(558,584)(559,583)(560,582);;
s2 := ( 1,323)( 2,322)( 3,321)( 4,325)( 5,324)( 6,328)( 7,327)( 8,326)
( 9,330)( 10,329)( 11,333)( 12,332)( 13,331)( 14,335)( 15,334)( 16,338)
( 17,337)( 18,336)( 19,340)( 20,339)( 21,348)( 22,347)( 23,346)( 24,350)
( 25,349)( 26,343)( 27,342)( 28,341)( 29,345)( 30,344)( 31,358)( 32,357)
( 33,356)( 34,360)( 35,359)( 36,353)( 37,352)( 38,351)( 39,355)( 40,354)
( 41,373)( 42,372)( 43,371)( 44,375)( 45,374)( 46,378)( 47,377)( 48,376)
( 49,380)( 50,379)( 51,363)( 52,362)( 53,361)( 54,365)( 55,364)( 56,368)
( 57,367)( 58,366)( 59,370)( 60,369)( 61,398)( 62,397)( 63,396)( 64,400)
( 65,399)( 66,393)( 67,392)( 68,391)( 69,395)( 70,394)( 71,388)( 72,387)
( 73,386)( 74,390)( 75,389)( 76,383)( 77,382)( 78,381)( 79,385)( 80,384)
( 81,423)( 82,422)( 83,421)( 84,425)( 85,424)( 86,428)( 87,427)( 88,426)
( 89,430)( 90,429)( 91,433)( 92,432)( 93,431)( 94,435)( 95,434)( 96,438)
( 97,437)( 98,436)( 99,440)(100,439)(101,403)(102,402)(103,401)(104,405)
(105,404)(106,408)(107,407)(108,406)(109,410)(110,409)(111,413)(112,412)
(113,411)(114,415)(115,414)(116,418)(117,417)(118,416)(119,420)(120,419)
(121,473)(122,472)(123,471)(124,475)(125,474)(126,478)(127,477)(128,476)
(129,480)(130,479)(131,463)(132,462)(133,461)(134,465)(135,464)(136,468)
(137,467)(138,466)(139,470)(140,469)(141,453)(142,452)(143,451)(144,455)
(145,454)(146,458)(147,457)(148,456)(149,460)(150,459)(151,443)(152,442)
(153,441)(154,445)(155,444)(156,448)(157,447)(158,446)(159,450)(160,449)
(161,483)(162,482)(163,481)(164,485)(165,484)(166,488)(167,487)(168,486)
(169,490)(170,489)(171,493)(172,492)(173,491)(174,495)(175,494)(176,498)
(177,497)(178,496)(179,500)(180,499)(181,508)(182,507)(183,506)(184,510)
(185,509)(186,503)(187,502)(188,501)(189,505)(190,504)(191,518)(192,517)
(193,516)(194,520)(195,519)(196,513)(197,512)(198,511)(199,515)(200,514)
(201,533)(202,532)(203,531)(204,535)(205,534)(206,538)(207,537)(208,536)
(209,540)(210,539)(211,523)(212,522)(213,521)(214,525)(215,524)(216,528)
(217,527)(218,526)(219,530)(220,529)(221,558)(222,557)(223,556)(224,560)
(225,559)(226,553)(227,552)(228,551)(229,555)(230,554)(231,548)(232,547)
(233,546)(234,550)(235,549)(236,543)(237,542)(238,541)(239,545)(240,544)
(241,583)(242,582)(243,581)(244,585)(245,584)(246,588)(247,587)(248,586)
(249,590)(250,589)(251,593)(252,592)(253,591)(254,595)(255,594)(256,598)
(257,597)(258,596)(259,600)(260,599)(261,563)(262,562)(263,561)(264,565)
(265,564)(266,568)(267,567)(268,566)(269,570)(270,569)(271,573)(272,572)
(273,571)(274,575)(275,574)(276,578)(277,577)(278,576)(279,580)(280,579)
(281,633)(282,632)(283,631)(284,635)(285,634)(286,638)(287,637)(288,636)
(289,640)(290,639)(291,623)(292,622)(293,621)(294,625)(295,624)(296,628)
(297,627)(298,626)(299,630)(300,629)(301,613)(302,612)(303,611)(304,615)
(305,614)(306,618)(307,617)(308,616)(309,620)(310,619)(311,603)(312,602)
(313,601)(314,605)(315,604)(316,608)(317,607)(318,606)(319,610)(320,609);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(640)!( 1,161)( 2,162)( 3,163)( 4,164)( 5,165)( 6,166)( 7,167)
( 8,168)( 9,169)( 10,170)( 11,171)( 12,172)( 13,173)( 14,174)( 15,175)
( 16,176)( 17,177)( 18,178)( 19,179)( 20,180)( 21,181)( 22,182)( 23,183)
( 24,184)( 25,185)( 26,186)( 27,187)( 28,188)( 29,189)( 30,190)( 31,191)
( 32,192)( 33,193)( 34,194)( 35,195)( 36,196)( 37,197)( 38,198)( 39,199)
( 40,200)( 41,211)( 42,212)( 43,213)( 44,214)( 45,215)( 46,216)( 47,217)
( 48,218)( 49,219)( 50,220)( 51,201)( 52,202)( 53,203)( 54,204)( 55,205)
( 56,206)( 57,207)( 58,208)( 59,209)( 60,210)( 61,231)( 62,232)( 63,233)
( 64,234)( 65,235)( 66,236)( 67,237)( 68,238)( 69,239)( 70,240)( 71,221)
( 72,222)( 73,223)( 74,224)( 75,225)( 76,226)( 77,227)( 78,228)( 79,229)
( 80,230)( 81,251)( 82,252)( 83,253)( 84,254)( 85,255)( 86,256)( 87,257)
( 88,258)( 89,259)( 90,260)( 91,241)( 92,242)( 93,243)( 94,244)( 95,245)
( 96,246)( 97,247)( 98,248)( 99,249)(100,250)(101,271)(102,272)(103,273)
(104,274)(105,275)(106,276)(107,277)(108,278)(109,279)(110,280)(111,261)
(112,262)(113,263)(114,264)(115,265)(116,266)(117,267)(118,268)(119,269)
(120,270)(121,281)(122,282)(123,283)(124,284)(125,285)(126,286)(127,287)
(128,288)(129,289)(130,290)(131,291)(132,292)(133,293)(134,294)(135,295)
(136,296)(137,297)(138,298)(139,299)(140,300)(141,301)(142,302)(143,303)
(144,304)(145,305)(146,306)(147,307)(148,308)(149,309)(150,310)(151,311)
(152,312)(153,313)(154,314)(155,315)(156,316)(157,317)(158,318)(159,319)
(160,320)(321,481)(322,482)(323,483)(324,484)(325,485)(326,486)(327,487)
(328,488)(329,489)(330,490)(331,491)(332,492)(333,493)(334,494)(335,495)
(336,496)(337,497)(338,498)(339,499)(340,500)(341,501)(342,502)(343,503)
(344,504)(345,505)(346,506)(347,507)(348,508)(349,509)(350,510)(351,511)
(352,512)(353,513)(354,514)(355,515)(356,516)(357,517)(358,518)(359,519)
(360,520)(361,531)(362,532)(363,533)(364,534)(365,535)(366,536)(367,537)
(368,538)(369,539)(370,540)(371,521)(372,522)(373,523)(374,524)(375,525)
(376,526)(377,527)(378,528)(379,529)(380,530)(381,551)(382,552)(383,553)
(384,554)(385,555)(386,556)(387,557)(388,558)(389,559)(390,560)(391,541)
(392,542)(393,543)(394,544)(395,545)(396,546)(397,547)(398,548)(399,549)
(400,550)(401,571)(402,572)(403,573)(404,574)(405,575)(406,576)(407,577)
(408,578)(409,579)(410,580)(411,561)(412,562)(413,563)(414,564)(415,565)
(416,566)(417,567)(418,568)(419,569)(420,570)(421,591)(422,592)(423,593)
(424,594)(425,595)(426,596)(427,597)(428,598)(429,599)(430,600)(431,581)
(432,582)(433,583)(434,584)(435,585)(436,586)(437,587)(438,588)(439,589)
(440,590)(441,601)(442,602)(443,603)(444,604)(445,605)(446,606)(447,607)
(448,608)(449,609)(450,610)(451,611)(452,612)(453,613)(454,614)(455,615)
(456,616)(457,617)(458,618)(459,619)(460,620)(461,621)(462,622)(463,623)
(464,624)(465,625)(466,626)(467,627)(468,628)(469,629)(470,630)(471,631)
(472,632)(473,633)(474,634)(475,635)(476,636)(477,637)(478,638)(479,639)
(480,640);
s1 := Sym(640)!( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 31, 36)( 32, 40)
( 33, 39)( 34, 38)( 35, 37)( 41, 51)( 42, 55)( 43, 54)( 44, 53)( 45, 52)
( 46, 56)( 47, 60)( 48, 59)( 49, 58)( 50, 57)( 61, 76)( 62, 80)( 63, 79)
( 64, 78)( 65, 77)( 66, 71)( 67, 75)( 68, 74)( 69, 73)( 70, 72)( 81,101)
( 82,105)( 83,104)( 84,103)( 85,102)( 86,106)( 87,110)( 88,109)( 89,108)
( 90,107)( 91,111)( 92,115)( 93,114)( 94,113)( 95,112)( 96,116)( 97,120)
( 98,119)( 99,118)(100,117)(121,151)(122,155)(123,154)(124,153)(125,152)
(126,156)(127,160)(128,159)(129,158)(130,157)(131,141)(132,145)(133,144)
(134,143)(135,142)(136,146)(137,150)(138,149)(139,148)(140,147)(161,201)
(162,205)(163,204)(164,203)(165,202)(166,206)(167,210)(168,209)(169,208)
(170,207)(171,211)(172,215)(173,214)(174,213)(175,212)(176,216)(177,220)
(178,219)(179,218)(180,217)(181,226)(182,230)(183,229)(184,228)(185,227)
(186,221)(187,225)(188,224)(189,223)(190,222)(191,236)(192,240)(193,239)
(194,238)(195,237)(196,231)(197,235)(198,234)(199,233)(200,232)(241,301)
(242,305)(243,304)(244,303)(245,302)(246,306)(247,310)(248,309)(249,308)
(250,307)(251,311)(252,315)(253,314)(254,313)(255,312)(256,316)(257,320)
(258,319)(259,318)(260,317)(261,281)(262,285)(263,284)(264,283)(265,282)
(266,286)(267,290)(268,289)(269,288)(270,287)(271,291)(272,295)(273,294)
(274,293)(275,292)(276,296)(277,300)(278,299)(279,298)(280,297)(321,401)
(322,405)(323,404)(324,403)(325,402)(326,406)(327,410)(328,409)(329,408)
(330,407)(331,411)(332,415)(333,414)(334,413)(335,412)(336,416)(337,420)
(338,419)(339,418)(340,417)(341,426)(342,430)(343,429)(344,428)(345,427)
(346,421)(347,425)(348,424)(349,423)(350,422)(351,436)(352,440)(353,439)
(354,438)(355,437)(356,431)(357,435)(358,434)(359,433)(360,432)(361,451)
(362,455)(363,454)(364,453)(365,452)(366,456)(367,460)(368,459)(369,458)
(370,457)(371,441)(372,445)(373,444)(374,443)(375,442)(376,446)(377,450)
(378,449)(379,448)(380,447)(381,476)(382,480)(383,479)(384,478)(385,477)
(386,471)(387,475)(388,474)(389,473)(390,472)(391,466)(392,470)(393,469)
(394,468)(395,467)(396,461)(397,465)(398,464)(399,463)(400,462)(481,611)
(482,615)(483,614)(484,613)(485,612)(486,616)(487,620)(488,619)(489,618)
(490,617)(491,601)(492,605)(493,604)(494,603)(495,602)(496,606)(497,610)
(498,609)(499,608)(500,607)(501,636)(502,640)(503,639)(504,638)(505,637)
(506,631)(507,635)(508,634)(509,633)(510,632)(511,626)(512,630)(513,629)
(514,628)(515,627)(516,621)(517,625)(518,624)(519,623)(520,622)(521,571)
(522,575)(523,574)(524,573)(525,572)(526,576)(527,580)(528,579)(529,578)
(530,577)(531,561)(532,565)(533,564)(534,563)(535,562)(536,566)(537,570)
(538,569)(539,568)(540,567)(541,596)(542,600)(543,599)(544,598)(545,597)
(546,591)(547,595)(548,594)(549,593)(550,592)(551,586)(552,590)(553,589)
(554,588)(555,587)(556,581)(557,585)(558,584)(559,583)(560,582);
s2 := Sym(640)!( 1,323)( 2,322)( 3,321)( 4,325)( 5,324)( 6,328)( 7,327)
( 8,326)( 9,330)( 10,329)( 11,333)( 12,332)( 13,331)( 14,335)( 15,334)
( 16,338)( 17,337)( 18,336)( 19,340)( 20,339)( 21,348)( 22,347)( 23,346)
( 24,350)( 25,349)( 26,343)( 27,342)( 28,341)( 29,345)( 30,344)( 31,358)
( 32,357)( 33,356)( 34,360)( 35,359)( 36,353)( 37,352)( 38,351)( 39,355)
( 40,354)( 41,373)( 42,372)( 43,371)( 44,375)( 45,374)( 46,378)( 47,377)
( 48,376)( 49,380)( 50,379)( 51,363)( 52,362)( 53,361)( 54,365)( 55,364)
( 56,368)( 57,367)( 58,366)( 59,370)( 60,369)( 61,398)( 62,397)( 63,396)
( 64,400)( 65,399)( 66,393)( 67,392)( 68,391)( 69,395)( 70,394)( 71,388)
( 72,387)( 73,386)( 74,390)( 75,389)( 76,383)( 77,382)( 78,381)( 79,385)
( 80,384)( 81,423)( 82,422)( 83,421)( 84,425)( 85,424)( 86,428)( 87,427)
( 88,426)( 89,430)( 90,429)( 91,433)( 92,432)( 93,431)( 94,435)( 95,434)
( 96,438)( 97,437)( 98,436)( 99,440)(100,439)(101,403)(102,402)(103,401)
(104,405)(105,404)(106,408)(107,407)(108,406)(109,410)(110,409)(111,413)
(112,412)(113,411)(114,415)(115,414)(116,418)(117,417)(118,416)(119,420)
(120,419)(121,473)(122,472)(123,471)(124,475)(125,474)(126,478)(127,477)
(128,476)(129,480)(130,479)(131,463)(132,462)(133,461)(134,465)(135,464)
(136,468)(137,467)(138,466)(139,470)(140,469)(141,453)(142,452)(143,451)
(144,455)(145,454)(146,458)(147,457)(148,456)(149,460)(150,459)(151,443)
(152,442)(153,441)(154,445)(155,444)(156,448)(157,447)(158,446)(159,450)
(160,449)(161,483)(162,482)(163,481)(164,485)(165,484)(166,488)(167,487)
(168,486)(169,490)(170,489)(171,493)(172,492)(173,491)(174,495)(175,494)
(176,498)(177,497)(178,496)(179,500)(180,499)(181,508)(182,507)(183,506)
(184,510)(185,509)(186,503)(187,502)(188,501)(189,505)(190,504)(191,518)
(192,517)(193,516)(194,520)(195,519)(196,513)(197,512)(198,511)(199,515)
(200,514)(201,533)(202,532)(203,531)(204,535)(205,534)(206,538)(207,537)
(208,536)(209,540)(210,539)(211,523)(212,522)(213,521)(214,525)(215,524)
(216,528)(217,527)(218,526)(219,530)(220,529)(221,558)(222,557)(223,556)
(224,560)(225,559)(226,553)(227,552)(228,551)(229,555)(230,554)(231,548)
(232,547)(233,546)(234,550)(235,549)(236,543)(237,542)(238,541)(239,545)
(240,544)(241,583)(242,582)(243,581)(244,585)(245,584)(246,588)(247,587)
(248,586)(249,590)(250,589)(251,593)(252,592)(253,591)(254,595)(255,594)
(256,598)(257,597)(258,596)(259,600)(260,599)(261,563)(262,562)(263,561)
(264,565)(265,564)(266,568)(267,567)(268,566)(269,570)(270,569)(271,573)
(272,572)(273,571)(274,575)(275,574)(276,578)(277,577)(278,576)(279,580)
(280,579)(281,633)(282,632)(283,631)(284,635)(285,634)(286,638)(287,637)
(288,636)(289,640)(290,639)(291,623)(292,622)(293,621)(294,625)(295,624)
(296,628)(297,627)(298,626)(299,630)(300,629)(301,613)(302,612)(303,611)
(304,615)(305,614)(306,618)(307,617)(308,616)(309,620)(310,619)(311,603)
(312,602)(313,601)(314,605)(315,604)(316,608)(317,607)(318,606)(319,610)
(320,609);
poly := sub<Sym(640)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope