Polytope of Type {8,80}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,80}*1280e
if this polytope has a name.
Group : SmallGroup(1280,83050)
Rank : 3
Schlafli Type : {8,80}
Number of vertices, edges, etc : 8, 320, 80
Order of s0s1s2 : 80
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,40}*640a, {4,80}*640b
   4-fold quotients : {4,40}*320a, {8,20}*320b
   5-fold quotients : {8,16}*256e
   8-fold quotients : {4,20}*160, {2,40}*160
   10-fold quotients : {8,8}*128a, {4,16}*128b
   16-fold quotients : {2,20}*80, {4,10}*80
   20-fold quotients : {4,8}*64a, {8,4}*64b
   32-fold quotients : {2,10}*40
   40-fold quotients : {4,4}*32, {2,8}*32
   64-fold quotients : {2,5}*20
   80-fold quotients : {2,4}*16, {4,2}*16
   160-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,161)(  2,162)(  3,163)(  4,164)(  5,165)(  6,166)(  7,167)(  8,168)
(  9,169)( 10,170)( 11,171)( 12,172)( 13,173)( 14,174)( 15,175)( 16,176)
( 17,177)( 18,178)( 19,179)( 20,180)( 21,181)( 22,182)( 23,183)( 24,184)
( 25,185)( 26,186)( 27,187)( 28,188)( 29,189)( 30,190)( 31,191)( 32,192)
( 33,193)( 34,194)( 35,195)( 36,196)( 37,197)( 38,198)( 39,199)( 40,200)
( 41,216)( 42,217)( 43,218)( 44,219)( 45,220)( 46,211)( 47,212)( 48,213)
( 49,214)( 50,215)( 51,206)( 52,207)( 53,208)( 54,209)( 55,210)( 56,201)
( 57,202)( 58,203)( 59,204)( 60,205)( 61,236)( 62,237)( 63,238)( 64,239)
( 65,240)( 66,231)( 67,232)( 68,233)( 69,234)( 70,235)( 71,226)( 72,227)
( 73,228)( 74,229)( 75,230)( 76,221)( 77,222)( 78,223)( 79,224)( 80,225)
( 81,251)( 82,252)( 83,253)( 84,254)( 85,255)( 86,256)( 87,257)( 88,258)
( 89,259)( 90,260)( 91,241)( 92,242)( 93,243)( 94,244)( 95,245)( 96,246)
( 97,247)( 98,248)( 99,249)(100,250)(101,271)(102,272)(103,273)(104,274)
(105,275)(106,276)(107,277)(108,278)(109,279)(110,280)(111,261)(112,262)
(113,263)(114,264)(115,265)(116,266)(117,267)(118,268)(119,269)(120,270)
(121,286)(122,287)(123,288)(124,289)(125,290)(126,281)(127,282)(128,283)
(129,284)(130,285)(131,296)(132,297)(133,298)(134,299)(135,300)(136,291)
(137,292)(138,293)(139,294)(140,295)(141,306)(142,307)(143,308)(144,309)
(145,310)(146,301)(147,302)(148,303)(149,304)(150,305)(151,316)(152,317)
(153,318)(154,319)(155,320)(156,311)(157,312)(158,313)(159,314)(160,315)
(321,481)(322,482)(323,483)(324,484)(325,485)(326,486)(327,487)(328,488)
(329,489)(330,490)(331,491)(332,492)(333,493)(334,494)(335,495)(336,496)
(337,497)(338,498)(339,499)(340,500)(341,501)(342,502)(343,503)(344,504)
(345,505)(346,506)(347,507)(348,508)(349,509)(350,510)(351,511)(352,512)
(353,513)(354,514)(355,515)(356,516)(357,517)(358,518)(359,519)(360,520)
(361,536)(362,537)(363,538)(364,539)(365,540)(366,531)(367,532)(368,533)
(369,534)(370,535)(371,526)(372,527)(373,528)(374,529)(375,530)(376,521)
(377,522)(378,523)(379,524)(380,525)(381,556)(382,557)(383,558)(384,559)
(385,560)(386,551)(387,552)(388,553)(389,554)(390,555)(391,546)(392,547)
(393,548)(394,549)(395,550)(396,541)(397,542)(398,543)(399,544)(400,545)
(401,571)(402,572)(403,573)(404,574)(405,575)(406,576)(407,577)(408,578)
(409,579)(410,580)(411,561)(412,562)(413,563)(414,564)(415,565)(416,566)
(417,567)(418,568)(419,569)(420,570)(421,591)(422,592)(423,593)(424,594)
(425,595)(426,596)(427,597)(428,598)(429,599)(430,600)(431,581)(432,582)
(433,583)(434,584)(435,585)(436,586)(437,587)(438,588)(439,589)(440,590)
(441,606)(442,607)(443,608)(444,609)(445,610)(446,601)(447,602)(448,603)
(449,604)(450,605)(451,616)(452,617)(453,618)(454,619)(455,620)(456,611)
(457,612)(458,613)(459,614)(460,615)(461,626)(462,627)(463,628)(464,629)
(465,630)(466,621)(467,622)(468,623)(469,624)(470,625)(471,636)(472,637)
(473,638)(474,639)(475,640)(476,631)(477,632)(478,633)(479,634)(480,635);;
s1 := (  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 31, 36)( 32, 40)( 33, 39)
( 34, 38)( 35, 37)( 41, 56)( 42, 60)( 43, 59)( 44, 58)( 45, 57)( 46, 51)
( 47, 55)( 48, 54)( 49, 53)( 50, 52)( 61, 71)( 62, 75)( 63, 74)( 64, 73)
( 65, 72)( 66, 76)( 67, 80)( 68, 79)( 69, 78)( 70, 77)( 81,101)( 82,105)
( 83,104)( 84,103)( 85,102)( 86,106)( 87,110)( 88,109)( 89,108)( 90,107)
( 91,111)( 92,115)( 93,114)( 94,113)( 95,112)( 96,116)( 97,120)( 98,119)
( 99,118)(100,117)(121,156)(122,160)(123,159)(124,158)(125,157)(126,151)
(127,155)(128,154)(129,153)(130,152)(131,146)(132,150)(133,149)(134,148)
(135,147)(136,141)(137,145)(138,144)(139,143)(140,142)(161,201)(162,205)
(163,204)(164,203)(165,202)(166,206)(167,210)(168,209)(169,208)(170,207)
(171,211)(172,215)(173,214)(174,213)(175,212)(176,216)(177,220)(178,219)
(179,218)(180,217)(181,226)(182,230)(183,229)(184,228)(185,227)(186,221)
(187,225)(188,224)(189,223)(190,222)(191,236)(192,240)(193,239)(194,238)
(195,237)(196,231)(197,235)(198,234)(199,233)(200,232)(241,301)(242,305)
(243,304)(244,303)(245,302)(246,306)(247,310)(248,309)(249,308)(250,307)
(251,311)(252,315)(253,314)(254,313)(255,312)(256,316)(257,320)(258,319)
(259,318)(260,317)(261,281)(262,285)(263,284)(264,283)(265,282)(266,286)
(267,290)(268,289)(269,288)(270,287)(271,291)(272,295)(273,294)(274,293)
(275,292)(276,296)(277,300)(278,299)(279,298)(280,297)(321,401)(322,405)
(323,404)(324,403)(325,402)(326,406)(327,410)(328,409)(329,408)(330,407)
(331,411)(332,415)(333,414)(334,413)(335,412)(336,416)(337,420)(338,419)
(339,418)(340,417)(341,426)(342,430)(343,429)(344,428)(345,427)(346,421)
(347,425)(348,424)(349,423)(350,422)(351,436)(352,440)(353,439)(354,438)
(355,437)(356,431)(357,435)(358,434)(359,433)(360,432)(361,456)(362,460)
(363,459)(364,458)(365,457)(366,451)(367,455)(368,454)(369,453)(370,452)
(371,446)(372,450)(373,449)(374,448)(375,447)(376,441)(377,445)(378,444)
(379,443)(380,442)(381,471)(382,475)(383,474)(384,473)(385,472)(386,476)
(387,480)(388,479)(389,478)(390,477)(391,461)(392,465)(393,464)(394,463)
(395,462)(396,466)(397,470)(398,469)(399,468)(400,467)(481,611)(482,615)
(483,614)(484,613)(485,612)(486,616)(487,620)(488,619)(489,618)(490,617)
(491,601)(492,605)(493,604)(494,603)(495,602)(496,606)(497,610)(498,609)
(499,608)(500,607)(501,636)(502,640)(503,639)(504,638)(505,637)(506,631)
(507,635)(508,634)(509,633)(510,632)(511,626)(512,630)(513,629)(514,628)
(515,627)(516,621)(517,625)(518,624)(519,623)(520,622)(521,571)(522,575)
(523,574)(524,573)(525,572)(526,576)(527,580)(528,579)(529,578)(530,577)
(531,561)(532,565)(533,564)(534,563)(535,562)(536,566)(537,570)(538,569)
(539,568)(540,567)(541,596)(542,600)(543,599)(544,598)(545,597)(546,591)
(547,595)(548,594)(549,593)(550,592)(551,586)(552,590)(553,589)(554,588)
(555,587)(556,581)(557,585)(558,584)(559,583)(560,582);;
s2 := (  1,323)(  2,322)(  3,321)(  4,325)(  5,324)(  6,328)(  7,327)(  8,326)
(  9,330)( 10,329)( 11,333)( 12,332)( 13,331)( 14,335)( 15,334)( 16,338)
( 17,337)( 18,336)( 19,340)( 20,339)( 21,348)( 22,347)( 23,346)( 24,350)
( 25,349)( 26,343)( 27,342)( 28,341)( 29,345)( 30,344)( 31,358)( 32,357)
( 33,356)( 34,360)( 35,359)( 36,353)( 37,352)( 38,351)( 39,355)( 40,354)
( 41,373)( 42,372)( 43,371)( 44,375)( 45,374)( 46,378)( 47,377)( 48,376)
( 49,380)( 50,379)( 51,363)( 52,362)( 53,361)( 54,365)( 55,364)( 56,368)
( 57,367)( 58,366)( 59,370)( 60,369)( 61,398)( 62,397)( 63,396)( 64,400)
( 65,399)( 66,393)( 67,392)( 68,391)( 69,395)( 70,394)( 71,388)( 72,387)
( 73,386)( 74,390)( 75,389)( 76,383)( 77,382)( 78,381)( 79,385)( 80,384)
( 81,423)( 82,422)( 83,421)( 84,425)( 85,424)( 86,428)( 87,427)( 88,426)
( 89,430)( 90,429)( 91,433)( 92,432)( 93,431)( 94,435)( 95,434)( 96,438)
( 97,437)( 98,436)( 99,440)(100,439)(101,403)(102,402)(103,401)(104,405)
(105,404)(106,408)(107,407)(108,406)(109,410)(110,409)(111,413)(112,412)
(113,411)(114,415)(115,414)(116,418)(117,417)(118,416)(119,420)(120,419)
(121,473)(122,472)(123,471)(124,475)(125,474)(126,478)(127,477)(128,476)
(129,480)(130,479)(131,463)(132,462)(133,461)(134,465)(135,464)(136,468)
(137,467)(138,466)(139,470)(140,469)(141,453)(142,452)(143,451)(144,455)
(145,454)(146,458)(147,457)(148,456)(149,460)(150,459)(151,443)(152,442)
(153,441)(154,445)(155,444)(156,448)(157,447)(158,446)(159,450)(160,449)
(161,483)(162,482)(163,481)(164,485)(165,484)(166,488)(167,487)(168,486)
(169,490)(170,489)(171,493)(172,492)(173,491)(174,495)(175,494)(176,498)
(177,497)(178,496)(179,500)(180,499)(181,508)(182,507)(183,506)(184,510)
(185,509)(186,503)(187,502)(188,501)(189,505)(190,504)(191,518)(192,517)
(193,516)(194,520)(195,519)(196,513)(197,512)(198,511)(199,515)(200,514)
(201,533)(202,532)(203,531)(204,535)(205,534)(206,538)(207,537)(208,536)
(209,540)(210,539)(211,523)(212,522)(213,521)(214,525)(215,524)(216,528)
(217,527)(218,526)(219,530)(220,529)(221,558)(222,557)(223,556)(224,560)
(225,559)(226,553)(227,552)(228,551)(229,555)(230,554)(231,548)(232,547)
(233,546)(234,550)(235,549)(236,543)(237,542)(238,541)(239,545)(240,544)
(241,583)(242,582)(243,581)(244,585)(245,584)(246,588)(247,587)(248,586)
(249,590)(250,589)(251,593)(252,592)(253,591)(254,595)(255,594)(256,598)
(257,597)(258,596)(259,600)(260,599)(261,563)(262,562)(263,561)(264,565)
(265,564)(266,568)(267,567)(268,566)(269,570)(270,569)(271,573)(272,572)
(273,571)(274,575)(275,574)(276,578)(277,577)(278,576)(279,580)(280,579)
(281,633)(282,632)(283,631)(284,635)(285,634)(286,638)(287,637)(288,636)
(289,640)(290,639)(291,623)(292,622)(293,621)(294,625)(295,624)(296,628)
(297,627)(298,626)(299,630)(300,629)(301,613)(302,612)(303,611)(304,615)
(305,614)(306,618)(307,617)(308,616)(309,620)(310,619)(311,603)(312,602)
(313,601)(314,605)(315,604)(316,608)(317,607)(318,606)(319,610)(320,609);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(640)!(  1,161)(  2,162)(  3,163)(  4,164)(  5,165)(  6,166)(  7,167)
(  8,168)(  9,169)( 10,170)( 11,171)( 12,172)( 13,173)( 14,174)( 15,175)
( 16,176)( 17,177)( 18,178)( 19,179)( 20,180)( 21,181)( 22,182)( 23,183)
( 24,184)( 25,185)( 26,186)( 27,187)( 28,188)( 29,189)( 30,190)( 31,191)
( 32,192)( 33,193)( 34,194)( 35,195)( 36,196)( 37,197)( 38,198)( 39,199)
( 40,200)( 41,216)( 42,217)( 43,218)( 44,219)( 45,220)( 46,211)( 47,212)
( 48,213)( 49,214)( 50,215)( 51,206)( 52,207)( 53,208)( 54,209)( 55,210)
( 56,201)( 57,202)( 58,203)( 59,204)( 60,205)( 61,236)( 62,237)( 63,238)
( 64,239)( 65,240)( 66,231)( 67,232)( 68,233)( 69,234)( 70,235)( 71,226)
( 72,227)( 73,228)( 74,229)( 75,230)( 76,221)( 77,222)( 78,223)( 79,224)
( 80,225)( 81,251)( 82,252)( 83,253)( 84,254)( 85,255)( 86,256)( 87,257)
( 88,258)( 89,259)( 90,260)( 91,241)( 92,242)( 93,243)( 94,244)( 95,245)
( 96,246)( 97,247)( 98,248)( 99,249)(100,250)(101,271)(102,272)(103,273)
(104,274)(105,275)(106,276)(107,277)(108,278)(109,279)(110,280)(111,261)
(112,262)(113,263)(114,264)(115,265)(116,266)(117,267)(118,268)(119,269)
(120,270)(121,286)(122,287)(123,288)(124,289)(125,290)(126,281)(127,282)
(128,283)(129,284)(130,285)(131,296)(132,297)(133,298)(134,299)(135,300)
(136,291)(137,292)(138,293)(139,294)(140,295)(141,306)(142,307)(143,308)
(144,309)(145,310)(146,301)(147,302)(148,303)(149,304)(150,305)(151,316)
(152,317)(153,318)(154,319)(155,320)(156,311)(157,312)(158,313)(159,314)
(160,315)(321,481)(322,482)(323,483)(324,484)(325,485)(326,486)(327,487)
(328,488)(329,489)(330,490)(331,491)(332,492)(333,493)(334,494)(335,495)
(336,496)(337,497)(338,498)(339,499)(340,500)(341,501)(342,502)(343,503)
(344,504)(345,505)(346,506)(347,507)(348,508)(349,509)(350,510)(351,511)
(352,512)(353,513)(354,514)(355,515)(356,516)(357,517)(358,518)(359,519)
(360,520)(361,536)(362,537)(363,538)(364,539)(365,540)(366,531)(367,532)
(368,533)(369,534)(370,535)(371,526)(372,527)(373,528)(374,529)(375,530)
(376,521)(377,522)(378,523)(379,524)(380,525)(381,556)(382,557)(383,558)
(384,559)(385,560)(386,551)(387,552)(388,553)(389,554)(390,555)(391,546)
(392,547)(393,548)(394,549)(395,550)(396,541)(397,542)(398,543)(399,544)
(400,545)(401,571)(402,572)(403,573)(404,574)(405,575)(406,576)(407,577)
(408,578)(409,579)(410,580)(411,561)(412,562)(413,563)(414,564)(415,565)
(416,566)(417,567)(418,568)(419,569)(420,570)(421,591)(422,592)(423,593)
(424,594)(425,595)(426,596)(427,597)(428,598)(429,599)(430,600)(431,581)
(432,582)(433,583)(434,584)(435,585)(436,586)(437,587)(438,588)(439,589)
(440,590)(441,606)(442,607)(443,608)(444,609)(445,610)(446,601)(447,602)
(448,603)(449,604)(450,605)(451,616)(452,617)(453,618)(454,619)(455,620)
(456,611)(457,612)(458,613)(459,614)(460,615)(461,626)(462,627)(463,628)
(464,629)(465,630)(466,621)(467,622)(468,623)(469,624)(470,625)(471,636)
(472,637)(473,638)(474,639)(475,640)(476,631)(477,632)(478,633)(479,634)
(480,635);
s1 := Sym(640)!(  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 31, 36)( 32, 40)
( 33, 39)( 34, 38)( 35, 37)( 41, 56)( 42, 60)( 43, 59)( 44, 58)( 45, 57)
( 46, 51)( 47, 55)( 48, 54)( 49, 53)( 50, 52)( 61, 71)( 62, 75)( 63, 74)
( 64, 73)( 65, 72)( 66, 76)( 67, 80)( 68, 79)( 69, 78)( 70, 77)( 81,101)
( 82,105)( 83,104)( 84,103)( 85,102)( 86,106)( 87,110)( 88,109)( 89,108)
( 90,107)( 91,111)( 92,115)( 93,114)( 94,113)( 95,112)( 96,116)( 97,120)
( 98,119)( 99,118)(100,117)(121,156)(122,160)(123,159)(124,158)(125,157)
(126,151)(127,155)(128,154)(129,153)(130,152)(131,146)(132,150)(133,149)
(134,148)(135,147)(136,141)(137,145)(138,144)(139,143)(140,142)(161,201)
(162,205)(163,204)(164,203)(165,202)(166,206)(167,210)(168,209)(169,208)
(170,207)(171,211)(172,215)(173,214)(174,213)(175,212)(176,216)(177,220)
(178,219)(179,218)(180,217)(181,226)(182,230)(183,229)(184,228)(185,227)
(186,221)(187,225)(188,224)(189,223)(190,222)(191,236)(192,240)(193,239)
(194,238)(195,237)(196,231)(197,235)(198,234)(199,233)(200,232)(241,301)
(242,305)(243,304)(244,303)(245,302)(246,306)(247,310)(248,309)(249,308)
(250,307)(251,311)(252,315)(253,314)(254,313)(255,312)(256,316)(257,320)
(258,319)(259,318)(260,317)(261,281)(262,285)(263,284)(264,283)(265,282)
(266,286)(267,290)(268,289)(269,288)(270,287)(271,291)(272,295)(273,294)
(274,293)(275,292)(276,296)(277,300)(278,299)(279,298)(280,297)(321,401)
(322,405)(323,404)(324,403)(325,402)(326,406)(327,410)(328,409)(329,408)
(330,407)(331,411)(332,415)(333,414)(334,413)(335,412)(336,416)(337,420)
(338,419)(339,418)(340,417)(341,426)(342,430)(343,429)(344,428)(345,427)
(346,421)(347,425)(348,424)(349,423)(350,422)(351,436)(352,440)(353,439)
(354,438)(355,437)(356,431)(357,435)(358,434)(359,433)(360,432)(361,456)
(362,460)(363,459)(364,458)(365,457)(366,451)(367,455)(368,454)(369,453)
(370,452)(371,446)(372,450)(373,449)(374,448)(375,447)(376,441)(377,445)
(378,444)(379,443)(380,442)(381,471)(382,475)(383,474)(384,473)(385,472)
(386,476)(387,480)(388,479)(389,478)(390,477)(391,461)(392,465)(393,464)
(394,463)(395,462)(396,466)(397,470)(398,469)(399,468)(400,467)(481,611)
(482,615)(483,614)(484,613)(485,612)(486,616)(487,620)(488,619)(489,618)
(490,617)(491,601)(492,605)(493,604)(494,603)(495,602)(496,606)(497,610)
(498,609)(499,608)(500,607)(501,636)(502,640)(503,639)(504,638)(505,637)
(506,631)(507,635)(508,634)(509,633)(510,632)(511,626)(512,630)(513,629)
(514,628)(515,627)(516,621)(517,625)(518,624)(519,623)(520,622)(521,571)
(522,575)(523,574)(524,573)(525,572)(526,576)(527,580)(528,579)(529,578)
(530,577)(531,561)(532,565)(533,564)(534,563)(535,562)(536,566)(537,570)
(538,569)(539,568)(540,567)(541,596)(542,600)(543,599)(544,598)(545,597)
(546,591)(547,595)(548,594)(549,593)(550,592)(551,586)(552,590)(553,589)
(554,588)(555,587)(556,581)(557,585)(558,584)(559,583)(560,582);
s2 := Sym(640)!(  1,323)(  2,322)(  3,321)(  4,325)(  5,324)(  6,328)(  7,327)
(  8,326)(  9,330)( 10,329)( 11,333)( 12,332)( 13,331)( 14,335)( 15,334)
( 16,338)( 17,337)( 18,336)( 19,340)( 20,339)( 21,348)( 22,347)( 23,346)
( 24,350)( 25,349)( 26,343)( 27,342)( 28,341)( 29,345)( 30,344)( 31,358)
( 32,357)( 33,356)( 34,360)( 35,359)( 36,353)( 37,352)( 38,351)( 39,355)
( 40,354)( 41,373)( 42,372)( 43,371)( 44,375)( 45,374)( 46,378)( 47,377)
( 48,376)( 49,380)( 50,379)( 51,363)( 52,362)( 53,361)( 54,365)( 55,364)
( 56,368)( 57,367)( 58,366)( 59,370)( 60,369)( 61,398)( 62,397)( 63,396)
( 64,400)( 65,399)( 66,393)( 67,392)( 68,391)( 69,395)( 70,394)( 71,388)
( 72,387)( 73,386)( 74,390)( 75,389)( 76,383)( 77,382)( 78,381)( 79,385)
( 80,384)( 81,423)( 82,422)( 83,421)( 84,425)( 85,424)( 86,428)( 87,427)
( 88,426)( 89,430)( 90,429)( 91,433)( 92,432)( 93,431)( 94,435)( 95,434)
( 96,438)( 97,437)( 98,436)( 99,440)(100,439)(101,403)(102,402)(103,401)
(104,405)(105,404)(106,408)(107,407)(108,406)(109,410)(110,409)(111,413)
(112,412)(113,411)(114,415)(115,414)(116,418)(117,417)(118,416)(119,420)
(120,419)(121,473)(122,472)(123,471)(124,475)(125,474)(126,478)(127,477)
(128,476)(129,480)(130,479)(131,463)(132,462)(133,461)(134,465)(135,464)
(136,468)(137,467)(138,466)(139,470)(140,469)(141,453)(142,452)(143,451)
(144,455)(145,454)(146,458)(147,457)(148,456)(149,460)(150,459)(151,443)
(152,442)(153,441)(154,445)(155,444)(156,448)(157,447)(158,446)(159,450)
(160,449)(161,483)(162,482)(163,481)(164,485)(165,484)(166,488)(167,487)
(168,486)(169,490)(170,489)(171,493)(172,492)(173,491)(174,495)(175,494)
(176,498)(177,497)(178,496)(179,500)(180,499)(181,508)(182,507)(183,506)
(184,510)(185,509)(186,503)(187,502)(188,501)(189,505)(190,504)(191,518)
(192,517)(193,516)(194,520)(195,519)(196,513)(197,512)(198,511)(199,515)
(200,514)(201,533)(202,532)(203,531)(204,535)(205,534)(206,538)(207,537)
(208,536)(209,540)(210,539)(211,523)(212,522)(213,521)(214,525)(215,524)
(216,528)(217,527)(218,526)(219,530)(220,529)(221,558)(222,557)(223,556)
(224,560)(225,559)(226,553)(227,552)(228,551)(229,555)(230,554)(231,548)
(232,547)(233,546)(234,550)(235,549)(236,543)(237,542)(238,541)(239,545)
(240,544)(241,583)(242,582)(243,581)(244,585)(245,584)(246,588)(247,587)
(248,586)(249,590)(250,589)(251,593)(252,592)(253,591)(254,595)(255,594)
(256,598)(257,597)(258,596)(259,600)(260,599)(261,563)(262,562)(263,561)
(264,565)(265,564)(266,568)(267,567)(268,566)(269,570)(270,569)(271,573)
(272,572)(273,571)(274,575)(275,574)(276,578)(277,577)(278,576)(279,580)
(280,579)(281,633)(282,632)(283,631)(284,635)(285,634)(286,638)(287,637)
(288,636)(289,640)(290,639)(291,623)(292,622)(293,621)(294,625)(295,624)
(296,628)(297,627)(298,626)(299,630)(300,629)(301,613)(302,612)(303,611)
(304,615)(305,614)(306,618)(307,617)(308,616)(309,620)(310,619)(311,603)
(312,602)(313,601)(314,605)(315,604)(316,608)(317,607)(318,606)(319,610)
(320,609);
poly := sub<Sym(640)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2 >; 
 
References : None.
to this polytope