Polytope of Type {8,40}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,40}*1280h
if this polytope has a name.
Group : SmallGroup(1280,90329)
Rank : 3
Schlafli Type : {8,40}
Number of vertices, edges, etc : 16, 320, 80
Order of s0s1s2 : 40
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,20}*640b
   4-fold quotients : {4,20}*320
   5-fold quotients : {8,8}*256h
   8-fold quotients : {4,20}*160
   10-fold quotients : {8,4}*128b
   16-fold quotients : {2,20}*80, {4,10}*80
   20-fold quotients : {4,4}*64
   32-fold quotients : {2,10}*40
   40-fold quotients : {4,4}*32
   64-fold quotients : {2,5}*20
   80-fold quotients : {2,4}*16, {4,2}*16
   160-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,481)(  2,482)(  3,483)(  4,484)(  5,485)(  6,486)(  7,487)(  8,488)
(  9,489)( 10,490)( 11,491)( 12,492)( 13,493)( 14,494)( 15,495)( 16,496)
( 17,497)( 18,498)( 19,499)( 20,500)( 21,506)( 22,507)( 23,508)( 24,509)
( 25,510)( 26,501)( 27,502)( 28,503)( 29,504)( 30,505)( 31,516)( 32,517)
( 33,518)( 34,519)( 35,520)( 36,511)( 37,512)( 38,513)( 39,514)( 40,515)
( 41,551)( 42,552)( 43,553)( 44,554)( 45,555)( 46,556)( 47,557)( 48,558)
( 49,559)( 50,560)( 51,541)( 52,542)( 53,543)( 54,544)( 55,545)( 56,546)
( 57,547)( 58,548)( 59,549)( 60,550)( 61,531)( 62,532)( 63,533)( 64,534)
( 65,535)( 66,536)( 67,537)( 68,538)( 69,539)( 70,540)( 71,521)( 72,522)
( 73,523)( 74,524)( 75,525)( 76,526)( 77,527)( 78,528)( 79,529)( 80,530)
( 81,586)( 82,587)( 83,588)( 84,589)( 85,590)( 86,581)( 87,582)( 88,583)
( 89,584)( 90,585)( 91,596)( 92,597)( 93,598)( 94,599)( 95,600)( 96,591)
( 97,592)( 98,593)( 99,594)(100,595)(101,566)(102,567)(103,568)(104,569)
(105,570)(106,561)(107,562)(108,563)(109,564)(110,565)(111,576)(112,577)
(113,578)(114,579)(115,580)(116,571)(117,572)(118,573)(119,574)(120,575)
(121,616)(122,617)(123,618)(124,619)(125,620)(126,611)(127,612)(128,613)
(129,614)(130,615)(131,606)(132,607)(133,608)(134,609)(135,610)(136,601)
(137,602)(138,603)(139,604)(140,605)(141,631)(142,632)(143,633)(144,634)
(145,635)(146,636)(147,637)(148,638)(149,639)(150,640)(151,621)(152,622)
(153,623)(154,624)(155,625)(156,626)(157,627)(158,628)(159,629)(160,630)
(161,321)(162,322)(163,323)(164,324)(165,325)(166,326)(167,327)(168,328)
(169,329)(170,330)(171,331)(172,332)(173,333)(174,334)(175,335)(176,336)
(177,337)(178,338)(179,339)(180,340)(181,346)(182,347)(183,348)(184,349)
(185,350)(186,341)(187,342)(188,343)(189,344)(190,345)(191,356)(192,357)
(193,358)(194,359)(195,360)(196,351)(197,352)(198,353)(199,354)(200,355)
(201,391)(202,392)(203,393)(204,394)(205,395)(206,396)(207,397)(208,398)
(209,399)(210,400)(211,381)(212,382)(213,383)(214,384)(215,385)(216,386)
(217,387)(218,388)(219,389)(220,390)(221,371)(222,372)(223,373)(224,374)
(225,375)(226,376)(227,377)(228,378)(229,379)(230,380)(231,361)(232,362)
(233,363)(234,364)(235,365)(236,366)(237,367)(238,368)(239,369)(240,370)
(241,426)(242,427)(243,428)(244,429)(245,430)(246,421)(247,422)(248,423)
(249,424)(250,425)(251,436)(252,437)(253,438)(254,439)(255,440)(256,431)
(257,432)(258,433)(259,434)(260,435)(261,406)(262,407)(263,408)(264,409)
(265,410)(266,401)(267,402)(268,403)(269,404)(270,405)(271,416)(272,417)
(273,418)(274,419)(275,420)(276,411)(277,412)(278,413)(279,414)(280,415)
(281,456)(282,457)(283,458)(284,459)(285,460)(286,451)(287,452)(288,453)
(289,454)(290,455)(291,446)(292,447)(293,448)(294,449)(295,450)(296,441)
(297,442)(298,443)(299,444)(300,445)(301,471)(302,472)(303,473)(304,474)
(305,475)(306,476)(307,477)(308,478)(309,479)(310,480)(311,461)(312,462)
(313,463)(314,464)(315,465)(316,466)(317,467)(318,468)(319,469)(320,470);;
s1 := (  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 21, 31)( 22, 35)( 23, 34)( 24, 33)( 25, 32)( 26, 36)( 27, 40)( 28, 39)
( 29, 38)( 30, 37)( 41, 46)( 42, 50)( 43, 49)( 44, 48)( 45, 47)( 51, 56)
( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 76)( 62, 80)( 63, 79)( 64, 78)
( 65, 77)( 66, 71)( 67, 75)( 68, 74)( 69, 73)( 70, 72)( 81, 86)( 82, 90)
( 83, 89)( 84, 88)( 85, 87)( 91, 96)( 92,100)( 93, 99)( 94, 98)( 95, 97)
(101,116)(102,120)(103,119)(104,118)(105,117)(106,111)(107,115)(108,114)
(109,113)(110,112)(122,125)(123,124)(127,130)(128,129)(132,135)(133,134)
(137,140)(138,139)(141,151)(142,155)(143,154)(144,153)(145,152)(146,156)
(147,160)(148,159)(149,158)(150,157)(161,201)(162,205)(163,204)(164,203)
(165,202)(166,206)(167,210)(168,209)(169,208)(170,207)(171,211)(172,215)
(173,214)(174,213)(175,212)(176,216)(177,220)(178,219)(179,218)(180,217)
(181,231)(182,235)(183,234)(184,233)(185,232)(186,236)(187,240)(188,239)
(189,238)(190,237)(191,221)(192,225)(193,224)(194,223)(195,222)(196,226)
(197,230)(198,229)(199,228)(200,227)(241,291)(242,295)(243,294)(244,293)
(245,292)(246,296)(247,300)(248,299)(249,298)(250,297)(251,281)(252,285)
(253,284)(254,283)(255,282)(256,286)(257,290)(258,289)(259,288)(260,287)
(261,301)(262,305)(263,304)(264,303)(265,302)(266,306)(267,310)(268,309)
(269,308)(270,307)(271,311)(272,315)(273,314)(274,313)(275,312)(276,316)
(277,320)(278,319)(279,318)(280,317)(321,401)(322,405)(323,404)(324,403)
(325,402)(326,406)(327,410)(328,409)(329,408)(330,407)(331,411)(332,415)
(333,414)(334,413)(335,412)(336,416)(337,420)(338,419)(339,418)(340,417)
(341,431)(342,435)(343,434)(344,433)(345,432)(346,436)(347,440)(348,439)
(349,438)(350,437)(351,421)(352,425)(353,424)(354,423)(355,422)(356,426)
(357,430)(358,429)(359,428)(360,427)(361,446)(362,450)(363,449)(364,448)
(365,447)(366,441)(367,445)(368,444)(369,443)(370,442)(371,456)(372,460)
(373,459)(374,458)(375,457)(376,451)(377,455)(378,454)(379,453)(380,452)
(381,476)(382,480)(383,479)(384,478)(385,477)(386,471)(387,475)(388,474)
(389,473)(390,472)(391,466)(392,470)(393,469)(394,468)(395,467)(396,461)
(397,465)(398,464)(399,463)(400,462)(481,626)(482,630)(483,629)(484,628)
(485,627)(486,621)(487,625)(488,624)(489,623)(490,622)(491,636)(492,640)
(493,639)(494,638)(495,637)(496,631)(497,635)(498,634)(499,633)(500,632)
(501,611)(502,615)(503,614)(504,613)(505,612)(506,616)(507,620)(508,619)
(509,618)(510,617)(511,601)(512,605)(513,604)(514,603)(515,602)(516,606)
(517,610)(518,609)(519,608)(520,607)(521,581)(522,585)(523,584)(524,583)
(525,582)(526,586)(527,590)(528,589)(529,588)(530,587)(531,591)(532,595)
(533,594)(534,593)(535,592)(536,596)(537,600)(538,599)(539,598)(540,597)
(541,576)(542,580)(543,579)(544,578)(545,577)(546,571)(547,575)(548,574)
(549,573)(550,572)(551,566)(552,570)(553,569)(554,568)(555,567)(556,561)
(557,565)(558,564)(559,563)(560,562);;
s2 := (  1,323)(  2,322)(  3,321)(  4,325)(  5,324)(  6,328)(  7,327)(  8,326)
(  9,330)( 10,329)( 11,338)( 12,337)( 13,336)( 14,340)( 15,339)( 16,333)
( 17,332)( 18,331)( 19,335)( 20,334)( 21,343)( 22,342)( 23,341)( 24,345)
( 25,344)( 26,348)( 27,347)( 28,346)( 29,350)( 30,349)( 31,358)( 32,357)
( 33,356)( 34,360)( 35,359)( 36,353)( 37,352)( 38,351)( 39,355)( 40,354)
( 41,398)( 42,397)( 43,396)( 44,400)( 45,399)( 46,393)( 47,392)( 48,391)
( 49,395)( 50,394)( 51,383)( 52,382)( 53,381)( 54,385)( 55,384)( 56,388)
( 57,387)( 58,386)( 59,390)( 60,389)( 61,373)( 62,372)( 63,371)( 64,375)
( 65,374)( 66,378)( 67,377)( 68,376)( 69,380)( 70,379)( 71,368)( 72,367)
( 73,366)( 74,370)( 75,369)( 76,363)( 77,362)( 78,361)( 79,365)( 80,364)
( 81,408)( 82,407)( 83,406)( 84,410)( 85,409)( 86,403)( 87,402)( 88,401)
( 89,405)( 90,404)( 91,413)( 92,412)( 93,411)( 94,415)( 95,414)( 96,418)
( 97,417)( 98,416)( 99,420)(100,419)(101,428)(102,427)(103,426)(104,430)
(105,429)(106,423)(107,422)(108,421)(109,425)(110,424)(111,433)(112,432)
(113,431)(114,435)(115,434)(116,438)(117,437)(118,436)(119,440)(120,439)
(121,473)(122,472)(123,471)(124,475)(125,474)(126,478)(127,477)(128,476)
(129,480)(130,479)(131,468)(132,467)(133,466)(134,470)(135,469)(136,463)
(137,462)(138,461)(139,465)(140,464)(141,458)(142,457)(143,456)(144,460)
(145,459)(146,453)(147,452)(148,451)(149,455)(150,454)(151,443)(152,442)
(153,441)(154,445)(155,444)(156,448)(157,447)(158,446)(159,450)(160,449)
(161,483)(162,482)(163,481)(164,485)(165,484)(166,488)(167,487)(168,486)
(169,490)(170,489)(171,498)(172,497)(173,496)(174,500)(175,499)(176,493)
(177,492)(178,491)(179,495)(180,494)(181,503)(182,502)(183,501)(184,505)
(185,504)(186,508)(187,507)(188,506)(189,510)(190,509)(191,518)(192,517)
(193,516)(194,520)(195,519)(196,513)(197,512)(198,511)(199,515)(200,514)
(201,558)(202,557)(203,556)(204,560)(205,559)(206,553)(207,552)(208,551)
(209,555)(210,554)(211,543)(212,542)(213,541)(214,545)(215,544)(216,548)
(217,547)(218,546)(219,550)(220,549)(221,533)(222,532)(223,531)(224,535)
(225,534)(226,538)(227,537)(228,536)(229,540)(230,539)(231,528)(232,527)
(233,526)(234,530)(235,529)(236,523)(237,522)(238,521)(239,525)(240,524)
(241,568)(242,567)(243,566)(244,570)(245,569)(246,563)(247,562)(248,561)
(249,565)(250,564)(251,573)(252,572)(253,571)(254,575)(255,574)(256,578)
(257,577)(258,576)(259,580)(260,579)(261,588)(262,587)(263,586)(264,590)
(265,589)(266,583)(267,582)(268,581)(269,585)(270,584)(271,593)(272,592)
(273,591)(274,595)(275,594)(276,598)(277,597)(278,596)(279,600)(280,599)
(281,633)(282,632)(283,631)(284,635)(285,634)(286,638)(287,637)(288,636)
(289,640)(290,639)(291,628)(292,627)(293,626)(294,630)(295,629)(296,623)
(297,622)(298,621)(299,625)(300,624)(301,618)(302,617)(303,616)(304,620)
(305,619)(306,613)(307,612)(308,611)(309,615)(310,614)(311,603)(312,602)
(313,601)(314,605)(315,604)(316,608)(317,607)(318,606)(319,610)(320,609);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(640)!(  1,481)(  2,482)(  3,483)(  4,484)(  5,485)(  6,486)(  7,487)
(  8,488)(  9,489)( 10,490)( 11,491)( 12,492)( 13,493)( 14,494)( 15,495)
( 16,496)( 17,497)( 18,498)( 19,499)( 20,500)( 21,506)( 22,507)( 23,508)
( 24,509)( 25,510)( 26,501)( 27,502)( 28,503)( 29,504)( 30,505)( 31,516)
( 32,517)( 33,518)( 34,519)( 35,520)( 36,511)( 37,512)( 38,513)( 39,514)
( 40,515)( 41,551)( 42,552)( 43,553)( 44,554)( 45,555)( 46,556)( 47,557)
( 48,558)( 49,559)( 50,560)( 51,541)( 52,542)( 53,543)( 54,544)( 55,545)
( 56,546)( 57,547)( 58,548)( 59,549)( 60,550)( 61,531)( 62,532)( 63,533)
( 64,534)( 65,535)( 66,536)( 67,537)( 68,538)( 69,539)( 70,540)( 71,521)
( 72,522)( 73,523)( 74,524)( 75,525)( 76,526)( 77,527)( 78,528)( 79,529)
( 80,530)( 81,586)( 82,587)( 83,588)( 84,589)( 85,590)( 86,581)( 87,582)
( 88,583)( 89,584)( 90,585)( 91,596)( 92,597)( 93,598)( 94,599)( 95,600)
( 96,591)( 97,592)( 98,593)( 99,594)(100,595)(101,566)(102,567)(103,568)
(104,569)(105,570)(106,561)(107,562)(108,563)(109,564)(110,565)(111,576)
(112,577)(113,578)(114,579)(115,580)(116,571)(117,572)(118,573)(119,574)
(120,575)(121,616)(122,617)(123,618)(124,619)(125,620)(126,611)(127,612)
(128,613)(129,614)(130,615)(131,606)(132,607)(133,608)(134,609)(135,610)
(136,601)(137,602)(138,603)(139,604)(140,605)(141,631)(142,632)(143,633)
(144,634)(145,635)(146,636)(147,637)(148,638)(149,639)(150,640)(151,621)
(152,622)(153,623)(154,624)(155,625)(156,626)(157,627)(158,628)(159,629)
(160,630)(161,321)(162,322)(163,323)(164,324)(165,325)(166,326)(167,327)
(168,328)(169,329)(170,330)(171,331)(172,332)(173,333)(174,334)(175,335)
(176,336)(177,337)(178,338)(179,339)(180,340)(181,346)(182,347)(183,348)
(184,349)(185,350)(186,341)(187,342)(188,343)(189,344)(190,345)(191,356)
(192,357)(193,358)(194,359)(195,360)(196,351)(197,352)(198,353)(199,354)
(200,355)(201,391)(202,392)(203,393)(204,394)(205,395)(206,396)(207,397)
(208,398)(209,399)(210,400)(211,381)(212,382)(213,383)(214,384)(215,385)
(216,386)(217,387)(218,388)(219,389)(220,390)(221,371)(222,372)(223,373)
(224,374)(225,375)(226,376)(227,377)(228,378)(229,379)(230,380)(231,361)
(232,362)(233,363)(234,364)(235,365)(236,366)(237,367)(238,368)(239,369)
(240,370)(241,426)(242,427)(243,428)(244,429)(245,430)(246,421)(247,422)
(248,423)(249,424)(250,425)(251,436)(252,437)(253,438)(254,439)(255,440)
(256,431)(257,432)(258,433)(259,434)(260,435)(261,406)(262,407)(263,408)
(264,409)(265,410)(266,401)(267,402)(268,403)(269,404)(270,405)(271,416)
(272,417)(273,418)(274,419)(275,420)(276,411)(277,412)(278,413)(279,414)
(280,415)(281,456)(282,457)(283,458)(284,459)(285,460)(286,451)(287,452)
(288,453)(289,454)(290,455)(291,446)(292,447)(293,448)(294,449)(295,450)
(296,441)(297,442)(298,443)(299,444)(300,445)(301,471)(302,472)(303,473)
(304,474)(305,475)(306,476)(307,477)(308,478)(309,479)(310,480)(311,461)
(312,462)(313,463)(314,464)(315,465)(316,466)(317,467)(318,468)(319,469)
(320,470);
s1 := Sym(640)!(  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 21, 31)( 22, 35)( 23, 34)( 24, 33)( 25, 32)( 26, 36)( 27, 40)
( 28, 39)( 29, 38)( 30, 37)( 41, 46)( 42, 50)( 43, 49)( 44, 48)( 45, 47)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 76)( 62, 80)( 63, 79)
( 64, 78)( 65, 77)( 66, 71)( 67, 75)( 68, 74)( 69, 73)( 70, 72)( 81, 86)
( 82, 90)( 83, 89)( 84, 88)( 85, 87)( 91, 96)( 92,100)( 93, 99)( 94, 98)
( 95, 97)(101,116)(102,120)(103,119)(104,118)(105,117)(106,111)(107,115)
(108,114)(109,113)(110,112)(122,125)(123,124)(127,130)(128,129)(132,135)
(133,134)(137,140)(138,139)(141,151)(142,155)(143,154)(144,153)(145,152)
(146,156)(147,160)(148,159)(149,158)(150,157)(161,201)(162,205)(163,204)
(164,203)(165,202)(166,206)(167,210)(168,209)(169,208)(170,207)(171,211)
(172,215)(173,214)(174,213)(175,212)(176,216)(177,220)(178,219)(179,218)
(180,217)(181,231)(182,235)(183,234)(184,233)(185,232)(186,236)(187,240)
(188,239)(189,238)(190,237)(191,221)(192,225)(193,224)(194,223)(195,222)
(196,226)(197,230)(198,229)(199,228)(200,227)(241,291)(242,295)(243,294)
(244,293)(245,292)(246,296)(247,300)(248,299)(249,298)(250,297)(251,281)
(252,285)(253,284)(254,283)(255,282)(256,286)(257,290)(258,289)(259,288)
(260,287)(261,301)(262,305)(263,304)(264,303)(265,302)(266,306)(267,310)
(268,309)(269,308)(270,307)(271,311)(272,315)(273,314)(274,313)(275,312)
(276,316)(277,320)(278,319)(279,318)(280,317)(321,401)(322,405)(323,404)
(324,403)(325,402)(326,406)(327,410)(328,409)(329,408)(330,407)(331,411)
(332,415)(333,414)(334,413)(335,412)(336,416)(337,420)(338,419)(339,418)
(340,417)(341,431)(342,435)(343,434)(344,433)(345,432)(346,436)(347,440)
(348,439)(349,438)(350,437)(351,421)(352,425)(353,424)(354,423)(355,422)
(356,426)(357,430)(358,429)(359,428)(360,427)(361,446)(362,450)(363,449)
(364,448)(365,447)(366,441)(367,445)(368,444)(369,443)(370,442)(371,456)
(372,460)(373,459)(374,458)(375,457)(376,451)(377,455)(378,454)(379,453)
(380,452)(381,476)(382,480)(383,479)(384,478)(385,477)(386,471)(387,475)
(388,474)(389,473)(390,472)(391,466)(392,470)(393,469)(394,468)(395,467)
(396,461)(397,465)(398,464)(399,463)(400,462)(481,626)(482,630)(483,629)
(484,628)(485,627)(486,621)(487,625)(488,624)(489,623)(490,622)(491,636)
(492,640)(493,639)(494,638)(495,637)(496,631)(497,635)(498,634)(499,633)
(500,632)(501,611)(502,615)(503,614)(504,613)(505,612)(506,616)(507,620)
(508,619)(509,618)(510,617)(511,601)(512,605)(513,604)(514,603)(515,602)
(516,606)(517,610)(518,609)(519,608)(520,607)(521,581)(522,585)(523,584)
(524,583)(525,582)(526,586)(527,590)(528,589)(529,588)(530,587)(531,591)
(532,595)(533,594)(534,593)(535,592)(536,596)(537,600)(538,599)(539,598)
(540,597)(541,576)(542,580)(543,579)(544,578)(545,577)(546,571)(547,575)
(548,574)(549,573)(550,572)(551,566)(552,570)(553,569)(554,568)(555,567)
(556,561)(557,565)(558,564)(559,563)(560,562);
s2 := Sym(640)!(  1,323)(  2,322)(  3,321)(  4,325)(  5,324)(  6,328)(  7,327)
(  8,326)(  9,330)( 10,329)( 11,338)( 12,337)( 13,336)( 14,340)( 15,339)
( 16,333)( 17,332)( 18,331)( 19,335)( 20,334)( 21,343)( 22,342)( 23,341)
( 24,345)( 25,344)( 26,348)( 27,347)( 28,346)( 29,350)( 30,349)( 31,358)
( 32,357)( 33,356)( 34,360)( 35,359)( 36,353)( 37,352)( 38,351)( 39,355)
( 40,354)( 41,398)( 42,397)( 43,396)( 44,400)( 45,399)( 46,393)( 47,392)
( 48,391)( 49,395)( 50,394)( 51,383)( 52,382)( 53,381)( 54,385)( 55,384)
( 56,388)( 57,387)( 58,386)( 59,390)( 60,389)( 61,373)( 62,372)( 63,371)
( 64,375)( 65,374)( 66,378)( 67,377)( 68,376)( 69,380)( 70,379)( 71,368)
( 72,367)( 73,366)( 74,370)( 75,369)( 76,363)( 77,362)( 78,361)( 79,365)
( 80,364)( 81,408)( 82,407)( 83,406)( 84,410)( 85,409)( 86,403)( 87,402)
( 88,401)( 89,405)( 90,404)( 91,413)( 92,412)( 93,411)( 94,415)( 95,414)
( 96,418)( 97,417)( 98,416)( 99,420)(100,419)(101,428)(102,427)(103,426)
(104,430)(105,429)(106,423)(107,422)(108,421)(109,425)(110,424)(111,433)
(112,432)(113,431)(114,435)(115,434)(116,438)(117,437)(118,436)(119,440)
(120,439)(121,473)(122,472)(123,471)(124,475)(125,474)(126,478)(127,477)
(128,476)(129,480)(130,479)(131,468)(132,467)(133,466)(134,470)(135,469)
(136,463)(137,462)(138,461)(139,465)(140,464)(141,458)(142,457)(143,456)
(144,460)(145,459)(146,453)(147,452)(148,451)(149,455)(150,454)(151,443)
(152,442)(153,441)(154,445)(155,444)(156,448)(157,447)(158,446)(159,450)
(160,449)(161,483)(162,482)(163,481)(164,485)(165,484)(166,488)(167,487)
(168,486)(169,490)(170,489)(171,498)(172,497)(173,496)(174,500)(175,499)
(176,493)(177,492)(178,491)(179,495)(180,494)(181,503)(182,502)(183,501)
(184,505)(185,504)(186,508)(187,507)(188,506)(189,510)(190,509)(191,518)
(192,517)(193,516)(194,520)(195,519)(196,513)(197,512)(198,511)(199,515)
(200,514)(201,558)(202,557)(203,556)(204,560)(205,559)(206,553)(207,552)
(208,551)(209,555)(210,554)(211,543)(212,542)(213,541)(214,545)(215,544)
(216,548)(217,547)(218,546)(219,550)(220,549)(221,533)(222,532)(223,531)
(224,535)(225,534)(226,538)(227,537)(228,536)(229,540)(230,539)(231,528)
(232,527)(233,526)(234,530)(235,529)(236,523)(237,522)(238,521)(239,525)
(240,524)(241,568)(242,567)(243,566)(244,570)(245,569)(246,563)(247,562)
(248,561)(249,565)(250,564)(251,573)(252,572)(253,571)(254,575)(255,574)
(256,578)(257,577)(258,576)(259,580)(260,579)(261,588)(262,587)(263,586)
(264,590)(265,589)(266,583)(267,582)(268,581)(269,585)(270,584)(271,593)
(272,592)(273,591)(274,595)(275,594)(276,598)(277,597)(278,596)(279,600)
(280,599)(281,633)(282,632)(283,631)(284,635)(285,634)(286,638)(287,637)
(288,636)(289,640)(290,639)(291,628)(292,627)(293,626)(294,630)(295,629)
(296,623)(297,622)(298,621)(299,625)(300,624)(301,618)(302,617)(303,616)
(304,620)(305,619)(306,613)(307,612)(308,611)(309,615)(310,614)(311,603)
(312,602)(313,601)(314,605)(315,604)(316,608)(317,607)(318,606)(319,610)
(320,609);
poly := sub<Sym(640)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 >; 
 
References : None.
to this polytope