Polytope of Type {9,2,9,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,2,9,4}*1296
if this polytope has a name.
Group : SmallGroup(1296,1782)
Rank : 5
Schlafli Type : {9,2,9,4}
Number of vertices, edges, etc : 9, 9, 9, 18, 4
Order of s0s1s2s3s4 : 9
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {9,2,3,4}*432, {3,2,9,4}*432
   9-fold quotients : {3,2,3,4}*144
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (10,11)(12,15)(13,14)(16,24)(17,23)(18,25)(19,21)(20,22)(26,32)(27,33)
(28,30)(29,31)(34,40)(35,41)(36,38)(37,39)(42,45)(43,44);;
s3 := (10,14)(11,12)(13,21)(15,17)(16,18)(19,30)(20,31)(22,24)(23,26)(25,27)
(28,38)(29,39)(32,34)(33,35)(36,40)(37,44)(41,42)(43,45);;
s4 := (10,24)(11,16)(12,18)(15,25)(19,29)(21,31)(26,35)(28,37)(30,39)(32,41)
(34,42)(40,45);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4*s3*s4, s4*s3*s2*s4*s3*s4*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(45)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(45)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(45)!(10,11)(12,15)(13,14)(16,24)(17,23)(18,25)(19,21)(20,22)(26,32)
(27,33)(28,30)(29,31)(34,40)(35,41)(36,38)(37,39)(42,45)(43,44);
s3 := Sym(45)!(10,14)(11,12)(13,21)(15,17)(16,18)(19,30)(20,31)(22,24)(23,26)
(25,27)(28,38)(29,39)(32,34)(33,35)(36,40)(37,44)(41,42)(43,45);
s4 := Sym(45)!(10,24)(11,16)(12,18)(15,25)(19,29)(21,31)(26,35)(28,37)(30,39)
(32,41)(34,42)(40,45);
poly := sub<Sym(45)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s3*s2*s4*s3*s4*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope