include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,2,9}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,2,9}*324
if this polytope has a name.
Group : SmallGroup(324,36)
Rank : 4
Schlafli Type : {9,2,9}
Number of vertices, edges, etc : 9, 9, 9, 9
Order of s0s1s2s3 : 9
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{9,2,9,2} of size 648
{9,2,9,4} of size 1296
{9,2,9,6} of size 1944
Vertex Figure Of :
{2,9,2,9} of size 648
{4,9,2,9} of size 1296
{6,9,2,9} of size 1944
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,2,9}*108, {9,2,3}*108
9-fold quotients : {3,2,3}*36
Covers (Minimal Covers in Boldface) :
2-fold covers : {9,2,18}*648, {18,2,9}*648
3-fold covers : {9,6,9}*972, {9,2,27}*972, {27,2,9}*972
4-fold covers : {9,2,36}*1296, {36,2,9}*1296, {18,2,18}*1296
5-fold covers : {9,2,45}*1620, {45,2,9}*1620
6-fold covers : {9,6,18}*1944a, {18,6,9}*1944a, {9,2,54}*1944, {18,2,27}*1944, {27,2,18}*1944, {54,2,9}*1944, {9,6,18}*1944b, {18,6,9}*1944b
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (11,12)(13,14)(15,16)(17,18);;
s3 := (10,11)(12,13)(14,15)(16,17);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(18)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(18)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(18)!(11,12)(13,14)(15,16)(17,18);
s3 := Sym(18)!(10,11)(12,13)(14,15)(16,17);
poly := sub<Sym(18)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope