include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,36}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,36}*1296i
if this polytope has a name.
Group : SmallGroup(1296,1783)
Rank : 3
Schlafli Type : {6,36}
Number of vertices, edges, etc : 18, 324, 108
Order of s0s1s2 : 9
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,12}*432d
4-fold quotients : {6,18}*324b
9-fold quotients : {6,12}*144d
12-fold quotients : {6,6}*108
27-fold quotients : {6,4}*48b
54-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 11, 12)( 13, 29)( 14, 30)( 15, 32)( 16, 31)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 25)( 22, 26)( 23, 28)( 24, 27)( 39, 40)
( 43, 44)( 47, 48)( 49, 65)( 50, 66)( 51, 68)( 52, 67)( 53, 69)( 54, 70)
( 55, 72)( 56, 71)( 57, 61)( 58, 62)( 59, 64)( 60, 63)( 75, 76)( 79, 80)
( 83, 84)( 85,101)( 86,102)( 87,104)( 88,103)( 89,105)( 90,106)( 91,108)
( 92,107)( 93, 97)( 94, 98)( 95,100)( 96, 99);;
s1 := ( 2, 4)( 5, 9)( 6, 12)( 7, 11)( 8, 10)( 14, 16)( 17, 21)( 18, 24)
( 19, 23)( 20, 22)( 26, 28)( 29, 33)( 30, 36)( 31, 35)( 32, 34)( 37,105)
( 38,108)( 39,107)( 40,106)( 41,101)( 42,104)( 43,103)( 44,102)( 45, 97)
( 46,100)( 47, 99)( 48, 98)( 49, 81)( 50, 84)( 51, 83)( 52, 82)( 53, 77)
( 54, 80)( 55, 79)( 56, 78)( 57, 73)( 58, 76)( 59, 75)( 60, 74)( 61, 93)
( 62, 96)( 63, 95)( 64, 94)( 65, 89)( 66, 92)( 67, 91)( 68, 90)( 69, 85)
( 70, 88)( 71, 87)( 72, 86);;
s2 := ( 1, 38)( 2, 37)( 3, 40)( 4, 39)( 5, 46)( 6, 45)( 7, 48)( 8, 47)
( 9, 42)( 10, 41)( 11, 44)( 12, 43)( 13, 62)( 14, 61)( 15, 64)( 16, 63)
( 17, 70)( 18, 69)( 19, 72)( 20, 71)( 21, 66)( 22, 65)( 23, 68)( 24, 67)
( 25, 50)( 26, 49)( 27, 52)( 28, 51)( 29, 58)( 30, 57)( 31, 60)( 32, 59)
( 33, 54)( 34, 53)( 35, 56)( 36, 55)( 73, 82)( 74, 81)( 75, 84)( 76, 83)
( 77, 78)( 79, 80)( 85,106)( 86,105)( 87,108)( 88,107)( 89,102)( 90,101)
( 91,104)( 92,103)( 93, 98)( 94, 97)( 95,100)( 96, 99);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(108)!( 3, 4)( 7, 8)( 11, 12)( 13, 29)( 14, 30)( 15, 32)( 16, 31)
( 17, 33)( 18, 34)( 19, 36)( 20, 35)( 21, 25)( 22, 26)( 23, 28)( 24, 27)
( 39, 40)( 43, 44)( 47, 48)( 49, 65)( 50, 66)( 51, 68)( 52, 67)( 53, 69)
( 54, 70)( 55, 72)( 56, 71)( 57, 61)( 58, 62)( 59, 64)( 60, 63)( 75, 76)
( 79, 80)( 83, 84)( 85,101)( 86,102)( 87,104)( 88,103)( 89,105)( 90,106)
( 91,108)( 92,107)( 93, 97)( 94, 98)( 95,100)( 96, 99);
s1 := Sym(108)!( 2, 4)( 5, 9)( 6, 12)( 7, 11)( 8, 10)( 14, 16)( 17, 21)
( 18, 24)( 19, 23)( 20, 22)( 26, 28)( 29, 33)( 30, 36)( 31, 35)( 32, 34)
( 37,105)( 38,108)( 39,107)( 40,106)( 41,101)( 42,104)( 43,103)( 44,102)
( 45, 97)( 46,100)( 47, 99)( 48, 98)( 49, 81)( 50, 84)( 51, 83)( 52, 82)
( 53, 77)( 54, 80)( 55, 79)( 56, 78)( 57, 73)( 58, 76)( 59, 75)( 60, 74)
( 61, 93)( 62, 96)( 63, 95)( 64, 94)( 65, 89)( 66, 92)( 67, 91)( 68, 90)
( 69, 85)( 70, 88)( 71, 87)( 72, 86);
s2 := Sym(108)!( 1, 38)( 2, 37)( 3, 40)( 4, 39)( 5, 46)( 6, 45)( 7, 48)
( 8, 47)( 9, 42)( 10, 41)( 11, 44)( 12, 43)( 13, 62)( 14, 61)( 15, 64)
( 16, 63)( 17, 70)( 18, 69)( 19, 72)( 20, 71)( 21, 66)( 22, 65)( 23, 68)
( 24, 67)( 25, 50)( 26, 49)( 27, 52)( 28, 51)( 29, 58)( 30, 57)( 31, 60)
( 32, 59)( 33, 54)( 34, 53)( 35, 56)( 36, 55)( 73, 82)( 74, 81)( 75, 84)
( 76, 83)( 77, 78)( 79, 80)( 85,106)( 86,105)( 87,108)( 88,107)( 89,102)
( 90,101)( 91,104)( 92,103)( 93, 98)( 94, 97)( 95,100)( 96, 99);
poly := sub<Sym(108)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1 >;
References : None.
to this polytope