Polytope of Type {36}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {36}*72
Also Known As : 36-gon, {36}. if this polytope has another name.
Group : SmallGroup(72,6)
Rank : 2
Schlafli Type : {36}
Number of vertices, edges, etc : 36, 36
Order of s0s1 : 36
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {36,2} of size 144
   {36,4} of size 288
   {36,4} of size 288
   {36,4} of size 288
   {36,6} of size 432
   {36,6} of size 432
   {36,6} of size 432
   {36,4} of size 576
   {36,8} of size 576
   {36,8} of size 576
   {36,4} of size 576
   {36,4} of size 576
   {36,6} of size 648
   {36,6} of size 648
   {36,6} of size 648
   {36,10} of size 720
   {36,12} of size 864
   {36,12} of size 864
   {36,6} of size 864
   {36,14} of size 1008
   {36,8} of size 1152
   {36,16} of size 1152
   {36,16} of size 1152
   {36,4} of size 1152
   {36,8} of size 1152
   {36,4} of size 1152
   {36,4} of size 1152
   {36,8} of size 1152
   {36,8} of size 1152
   {36,4} of size 1152
   {36,8} of size 1152
   {36,8} of size 1152
   {36,8} of size 1152
   {36,8} of size 1152
   {36,4} of size 1152
   {36,18} of size 1296
   {36,18} of size 1296
   {36,6} of size 1296
   {36,6} of size 1296
   {36,6} of size 1296
   {36,6} of size 1296
   {36,6} of size 1296
   {36,6} of size 1296
   {36,6} of size 1296
   {36,18} of size 1296
   {36,6} of size 1296
   {36,9} of size 1296
   {36,18} of size 1296
   {36,6} of size 1296
   {36,3} of size 1296
   {36,6} of size 1296
   {36,6} of size 1296
   {36,6} of size 1296
   {36,4} of size 1296
   {36,6} of size 1296
   {36,6} of size 1296
   {36,6} of size 1296
   {36,20} of size 1440
   {36,22} of size 1584
   {36,24} of size 1728
   {36,12} of size 1728
   {36,12} of size 1728
   {36,24} of size 1728
   {36,24} of size 1728
   {36,24} of size 1728
   {36,12} of size 1728
   {36,6} of size 1728
   {36,6} of size 1728
   {36,6} of size 1728
   {36,12} of size 1728
   {36,12} of size 1728
   {36,12} of size 1728
   {36,12} of size 1728
   {36,12} of size 1728
   {36,12} of size 1728
   {36,10} of size 1800
   {36,26} of size 1872
   {36,6} of size 1944
Vertex Figure Of :
   {2,36} of size 144
   {4,36} of size 288
   {4,36} of size 288
   {4,36} of size 288
   {6,36} of size 432
   {6,36} of size 432
   {6,36} of size 432
   {4,36} of size 576
   {8,36} of size 576
   {8,36} of size 576
   {4,36} of size 576
   {4,36} of size 576
   {6,36} of size 648
   {6,36} of size 648
   {6,36} of size 648
   {10,36} of size 720
   {12,36} of size 864
   {12,36} of size 864
   {6,36} of size 864
   {14,36} of size 1008
   {8,36} of size 1152
   {16,36} of size 1152
   {16,36} of size 1152
   {4,36} of size 1152
   {8,36} of size 1152
   {4,36} of size 1152
   {4,36} of size 1152
   {8,36} of size 1152
   {8,36} of size 1152
   {4,36} of size 1152
   {8,36} of size 1152
   {8,36} of size 1152
   {8,36} of size 1152
   {8,36} of size 1152
   {4,36} of size 1152
   {18,36} of size 1296
   {18,36} of size 1296
   {6,36} of size 1296
   {6,36} of size 1296
   {6,36} of size 1296
   {6,36} of size 1296
   {6,36} of size 1296
   {6,36} of size 1296
   {6,36} of size 1296
   {18,36} of size 1296
   {6,36} of size 1296
   {9,36} of size 1296
   {18,36} of size 1296
   {6,36} of size 1296
   {3,36} of size 1296
   {6,36} of size 1296
   {6,36} of size 1296
   {6,36} of size 1296
   {4,36} of size 1296
   {6,36} of size 1296
   {6,36} of size 1296
   {6,36} of size 1296
   {20,36} of size 1440
   {22,36} of size 1584
   {24,36} of size 1728
   {12,36} of size 1728
   {12,36} of size 1728
   {24,36} of size 1728
   {24,36} of size 1728
   {24,36} of size 1728
   {12,36} of size 1728
   {6,36} of size 1728
   {6,36} of size 1728
   {6,36} of size 1728
   {12,36} of size 1728
   {12,36} of size 1728
   {12,36} of size 1728
   {12,36} of size 1728
   {12,36} of size 1728
   {12,36} of size 1728
   {10,36} of size 1800
   {26,36} of size 1872
   {6,36} of size 1944
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {18}*36
   3-fold quotients : {12}*24
   4-fold quotients : {9}*18
   6-fold quotients : {6}*12
   9-fold quotients : {4}*8
   12-fold quotients : {3}*6
   18-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {72}*144
   3-fold covers : {108}*216
   4-fold covers : {144}*288
   5-fold covers : {180}*360
   6-fold covers : {216}*432
   7-fold covers : {252}*504
   8-fold covers : {288}*576
   9-fold covers : {324}*648
   10-fold covers : {360}*720
   11-fold covers : {396}*792
   12-fold covers : {432}*864
   13-fold covers : {468}*936
   14-fold covers : {504}*1008
   15-fold covers : {540}*1080
   16-fold covers : {576}*1152
   17-fold covers : {612}*1224
   18-fold covers : {648}*1296
   19-fold covers : {684}*1368
   20-fold covers : {720}*1440
   21-fold covers : {756}*1512
   22-fold covers : {792}*1584
   23-fold covers : {828}*1656
   24-fold covers : {864}*1728
   25-fold covers : {900}*1800
   26-fold covers : {936}*1872
   27-fold covers : {972}*1944
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20)(21,22)
(23,26)(24,25)(27,28)(29,30)(31,34)(32,33)(35,36);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,21)(12,23)(14,17)(16,19)
(18,29)(20,31)(22,25)(24,27)(26,35)(28,32)(30,33)(34,36);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(36)!( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20)
(21,22)(23,26)(24,25)(27,28)(29,30)(31,34)(32,33)(35,36);
s1 := Sym(36)!( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,21)(12,23)(14,17)
(16,19)(18,29)(20,31)(22,25)(24,27)(26,35)(28,32)(30,33)(34,36);
poly := sub<Sym(36)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope