Polytope of Type {3,36}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,36}*1296
if this polytope has a name.
Group : SmallGroup(1296,1784)
Rank : 3
Schlafli Type : {3,36}
Number of vertices, edges, etc : 18, 324, 216
Order of s0s1s2 : 6
Order of s0s1s2s1 : 36
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,12}*432
   4-fold quotients : {3,18}*324
   9-fold quotients : {3,12}*144
   12-fold quotients : {3,6}*108
   27-fold quotients : {3,4}*48
   36-fold quotients : {3,6}*36
   54-fold quotients : {3,4}*24
   108-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 21)( 14, 22)( 15, 24)
( 16, 23)( 19, 20)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)( 37, 77)
( 38, 78)( 39, 80)( 40, 79)( 41, 73)( 42, 74)( 43, 76)( 44, 75)( 45, 81)
( 46, 82)( 47, 84)( 48, 83)( 49, 85)( 50, 86)( 51, 88)( 52, 87)( 53, 93)
( 54, 94)( 55, 96)( 56, 95)( 57, 89)( 58, 90)( 59, 92)( 60, 91)( 61,105)
( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)( 68,103)( 69, 97)
( 70, 98)( 71,100)( 72, 99);;
s1 := (  1, 49)(  2, 51)(  3, 50)(  4, 52)(  5, 57)(  6, 59)(  7, 58)(  8, 60)
(  9, 53)( 10, 55)( 11, 54)( 12, 56)( 13, 65)( 14, 67)( 15, 66)( 16, 68)
( 17, 61)( 18, 63)( 19, 62)( 20, 64)( 21, 69)( 22, 71)( 23, 70)( 24, 72)
( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 41)( 30, 43)( 31, 42)( 32, 44)
( 33, 37)( 34, 39)( 35, 38)( 36, 40)( 73, 81)( 74, 83)( 75, 82)( 76, 84)
( 78, 79)( 86, 87)( 89, 93)( 90, 95)( 91, 94)( 92, 96)( 97,101)( 98,103)
( 99,102)(100,104)(106,107);;
s2 := (  1,  2)(  3,  4)(  5, 10)(  6,  9)(  7, 12)(  8, 11)( 13, 26)( 14, 25)
( 15, 28)( 16, 27)( 17, 34)( 18, 33)( 19, 36)( 20, 35)( 21, 30)( 22, 29)
( 23, 32)( 24, 31)( 37, 78)( 38, 77)( 39, 80)( 40, 79)( 41, 74)( 42, 73)
( 43, 76)( 44, 75)( 45, 82)( 46, 81)( 47, 84)( 48, 83)( 49,102)( 50,101)
( 51,104)( 52,103)( 53, 98)( 54, 97)( 55,100)( 56, 99)( 57,106)( 58,105)
( 59,108)( 60,107)( 61, 90)( 62, 89)( 63, 92)( 64, 91)( 65, 86)( 66, 85)
( 67, 88)( 68, 87)( 69, 94)( 70, 93)( 71, 96)( 72, 95);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(108)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 21)( 14, 22)
( 15, 24)( 16, 23)( 19, 20)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)
( 37, 77)( 38, 78)( 39, 80)( 40, 79)( 41, 73)( 42, 74)( 43, 76)( 44, 75)
( 45, 81)( 46, 82)( 47, 84)( 48, 83)( 49, 85)( 50, 86)( 51, 88)( 52, 87)
( 53, 93)( 54, 94)( 55, 96)( 56, 95)( 57, 89)( 58, 90)( 59, 92)( 60, 91)
( 61,105)( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)( 68,103)
( 69, 97)( 70, 98)( 71,100)( 72, 99);
s1 := Sym(108)!(  1, 49)(  2, 51)(  3, 50)(  4, 52)(  5, 57)(  6, 59)(  7, 58)
(  8, 60)(  9, 53)( 10, 55)( 11, 54)( 12, 56)( 13, 65)( 14, 67)( 15, 66)
( 16, 68)( 17, 61)( 18, 63)( 19, 62)( 20, 64)( 21, 69)( 22, 71)( 23, 70)
( 24, 72)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 41)( 30, 43)( 31, 42)
( 32, 44)( 33, 37)( 34, 39)( 35, 38)( 36, 40)( 73, 81)( 74, 83)( 75, 82)
( 76, 84)( 78, 79)( 86, 87)( 89, 93)( 90, 95)( 91, 94)( 92, 96)( 97,101)
( 98,103)( 99,102)(100,104)(106,107);
s2 := Sym(108)!(  1,  2)(  3,  4)(  5, 10)(  6,  9)(  7, 12)(  8, 11)( 13, 26)
( 14, 25)( 15, 28)( 16, 27)( 17, 34)( 18, 33)( 19, 36)( 20, 35)( 21, 30)
( 22, 29)( 23, 32)( 24, 31)( 37, 78)( 38, 77)( 39, 80)( 40, 79)( 41, 74)
( 42, 73)( 43, 76)( 44, 75)( 45, 82)( 46, 81)( 47, 84)( 48, 83)( 49,102)
( 50,101)( 51,104)( 52,103)( 53, 98)( 54, 97)( 55,100)( 56, 99)( 57,106)
( 58,105)( 59,108)( 60,107)( 61, 90)( 62, 89)( 63, 92)( 64, 91)( 65, 86)
( 66, 85)( 67, 88)( 68, 87)( 69, 94)( 70, 93)( 71, 96)( 72, 95);
poly := sub<Sym(108)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1 >; 
 
References : None.
to this polytope