Polytope of Type {12,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,6}*1296m
if this polytope has a name.
Group : SmallGroup(1296,2909)
Rank : 3
Schlafli Type : {12,6}
Number of vertices, edges, etc : 108, 324, 54
Order of s0s1s2 : 4
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {12,6}*432f, {12,6}*432h
   6-fold quotients : {12,6}*216a
   9-fold quotients : {4,6}*144
   18-fold quotients : {4,6}*72
   81-fold quotients : {4,2}*16
   162-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,28)(11,30)(12,29)(13,34)(14,36)(15,35)
(16,31)(17,33)(18,32)(19,55)(20,57)(21,56)(22,61)(23,63)(24,62)(25,58)(26,60)
(27,59)(37,38)(40,44)(41,43)(42,45)(46,66)(47,65)(48,64)(49,72)(50,71)(51,70)
(52,69)(53,68)(54,67)(73,74)(76,80)(77,79)(78,81);;
s1 := ( 1, 5)( 2, 4)( 3, 6)( 7, 8)(10,23)(11,22)(12,24)(13,20)(14,19)(15,21)
(16,26)(17,25)(18,27)(28,32)(29,31)(30,33)(34,35)(37,50)(38,49)(39,51)(40,47)
(41,46)(42,48)(43,53)(44,52)(45,54)(55,59)(56,58)(57,60)(61,62)(64,77)(65,76)
(66,78)(67,74)(68,73)(69,75)(70,80)(71,79)(72,81);;
s2 := ( 1,39)( 2,37)( 3,38)( 4,45)( 5,43)( 6,44)( 7,42)( 8,40)( 9,41)(10,29)
(11,30)(12,28)(13,35)(14,36)(15,34)(16,32)(17,33)(18,31)(19,46)(20,47)(21,48)
(22,52)(23,53)(24,54)(25,49)(26,50)(27,51)(55,66)(56,64)(57,65)(58,72)(59,70)
(60,71)(61,69)(62,67)(63,68)(76,79)(77,80)(78,81);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,28)(11,30)(12,29)(13,34)(14,36)
(15,35)(16,31)(17,33)(18,32)(19,55)(20,57)(21,56)(22,61)(23,63)(24,62)(25,58)
(26,60)(27,59)(37,38)(40,44)(41,43)(42,45)(46,66)(47,65)(48,64)(49,72)(50,71)
(51,70)(52,69)(53,68)(54,67)(73,74)(76,80)(77,79)(78,81);
s1 := Sym(81)!( 1, 5)( 2, 4)( 3, 6)( 7, 8)(10,23)(11,22)(12,24)(13,20)(14,19)
(15,21)(16,26)(17,25)(18,27)(28,32)(29,31)(30,33)(34,35)(37,50)(38,49)(39,51)
(40,47)(41,46)(42,48)(43,53)(44,52)(45,54)(55,59)(56,58)(57,60)(61,62)(64,77)
(65,76)(66,78)(67,74)(68,73)(69,75)(70,80)(71,79)(72,81);
s2 := Sym(81)!( 1,39)( 2,37)( 3,38)( 4,45)( 5,43)( 6,44)( 7,42)( 8,40)( 9,41)
(10,29)(11,30)(12,28)(13,35)(14,36)(15,34)(16,32)(17,33)(18,31)(19,46)(20,47)
(21,48)(22,52)(23,53)(24,54)(25,49)(26,50)(27,51)(55,66)(56,64)(57,65)(58,72)
(59,70)(60,71)(61,69)(62,67)(63,68)(76,79)(77,80)(78,81);
poly := sub<Sym(81)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1 >; 
 
References : None.
to this polytope