include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytopes of Type {12,6}
This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)
There are 103 polytopes of this type in this atlas. They are :
- {12,6}*144a (SmallGroup(144,144))
- {12,6}*144b (SmallGroup(144,144))
- {12,6}*144c (SmallGroup(144,154))
- {12,6}*144d (SmallGroup(144,183))
- {12,6}*192a (SmallGroup(192,1472))
- {12,6}*192b (SmallGroup(192,1481))
- {12,6}*216a (SmallGroup(216,87))
- {12,6}*216b (SmallGroup(216,87))
- {12,6}*216c (SmallGroup(216,159))
- {12,6}*288a (SmallGroup(288,1028))
- {12,6}*288b (SmallGroup(288,1028))
- {12,6}*384 (SmallGroup(384,17958))
- {12,6}*432a (SmallGroup(432,301))
- {12,6}*432b (SmallGroup(432,301))
- {12,6}*432c (SmallGroup(432,324))
- {12,6}*432d (SmallGroup(432,523))
- {12,6}*432e (SmallGroup(432,530))
- {12,6}*432f (SmallGroup(432,530))
- {12,6}*432g (SmallGroup(432,602))
- {12,6}*432h (SmallGroup(432,741))
- {12,6}*432i (SmallGroup(432,756))
- {12,6}*480a (SmallGroup(480,951))
- {12,6}*480b (SmallGroup(480,951))
- {12,6}*576a (SmallGroup(576,8313))
- {12,6}*576b (SmallGroup(576,8313))
- {12,6}*576c (SmallGroup(576,8319))
- {12,6}*576d (SmallGroup(576,8340))
- {12,6}*576e (SmallGroup(576,8355))
- {12,6}*576f (SmallGroup(576,8355))
- {12,6}*648 (SmallGroup(648,547))
- {12,6}*720a (SmallGroup(720,767))
- {12,6}*720b (SmallGroup(720,767))
- {12,6}*768a (SmallGroup(768,1086052))
- {12,6}*768b (SmallGroup(768,1086052))
- {12,6}*768c (SmallGroup(768,1086301))
- {12,6}*768d (SmallGroup(768,1086320))
- {12,6}*768e (SmallGroup(768,1086324))
- {12,6}*768f (SmallGroup(768,1087581))
- {12,6}*768g (SmallGroup(768,1087795))
- {12,6}*768h (SmallGroup(768,1088009))
- {12,6}*768i (SmallGroup(768,1088551))
- {12,6}*768j (SmallGroup(768,1088556))
- {12,6}*864a (SmallGroup(864,4000))
- {12,6}*864b (SmallGroup(864,4000))
- {12,6}*864c (SmallGroup(864,4673))
- {12,6}*960a (SmallGroup(960,10877))
- {12,6}*960b (SmallGroup(960,10882))
- {12,6}*1152a (SmallGroup(1152,155788))
- {12,6}*1152b (SmallGroup(1152,155790))
- {12,6}*1152c (SmallGroup(1152,155790))
- {12,6}*1152d (SmallGroup(1152,155849))
- {12,6}*1152e (SmallGroup(1152,156202))
- {12,6}*1152f (SmallGroup(1152,156509))
- {12,6}*1152g (SmallGroup(1152,157458))
- {12,6}*1152h (SmallGroup(1152,157478))
- {12,6}*1152i (SmallGroup(1152,157478))
- {12,6}*1152j (SmallGroup(1152,157851))
- {12,6}*1200a (SmallGroup(1200,513))
- {12,6}*1200b (SmallGroup(1200,522))
- {12,6}*1296a (SmallGroup(1296,839))
- {12,6}*1296b (SmallGroup(1296,840))
- {12,6}*1296c (SmallGroup(1296,868))
- {12,6}*1296d (SmallGroup(1296,943))
- {12,6}*1296e (SmallGroup(1296,1788))
- {12,6}*1296f (SmallGroup(1296,1790))
- {12,6}*1296g (SmallGroup(1296,2061))
- {12,6}*1296h (SmallGroup(1296,2061))
- {12,6}*1296i (SmallGroup(1296,2077))
- {12,6}*1296j (SmallGroup(1296,2909))
- {12,6}*1296k (SmallGroup(1296,2909))
- {12,6}*1296l (SmallGroup(1296,2909))
- {12,6}*1296m (SmallGroup(1296,2909))
- {12,6}*1296n (SmallGroup(1296,2909))
- {12,6}*1296o (SmallGroup(1296,2977))
- {12,6}*1296p (SmallGroup(1296,3490))
- {12,6}*1296q (SmallGroup(1296,3492))
- {12,6}*1296r (SmallGroup(1296,3492))
- {12,6}*1296s (SmallGroup(1296,3528))
- {12,6}*1296t (SmallGroup(1296,3529))
- {12,6}*1296u (SmallGroup(1296,3529))
- {12,6}*1320a (SmallGroup(1320,133))
- {12,6}*1320b (SmallGroup(1320,133))
- {12,6}*1344a (SmallGroup(1344,11295))
- {12,6}*1344b (SmallGroup(1344,11295))
- {12,6}*1440a (SmallGroup(1440,4602))
- {12,6}*1440b (SmallGroup(1440,4602))
- {12,6}*1440c (SmallGroup(1440,5849))
- {12,6}*1440d (SmallGroup(1440,5849))
- {12,6}*1728a (SmallGroup(1728,30243))
- {12,6}*1728b (SmallGroup(1728,30243))
- {12,6}*1728c (SmallGroup(1728,30267))
- {12,6}*1728d (SmallGroup(1728,30298))
- {12,6}*1728e (SmallGroup(1728,30326))
- {12,6}*1728f (SmallGroup(1728,30326))
- {12,6}*1728g (SmallGroup(1728,46303))
- {12,6}*1728h (SmallGroup(1728,46356))
- {12,6}*1728i (SmallGroup(1728,46356))
- {12,6}*1728j (SmallGroup(1728,47847))
- {12,6}*1920a (SmallGroup(1920,240800))
- {12,6}*1920b (SmallGroup(1920,240996))
- {12,6}*1944a (SmallGroup(1944,805))
- {12,6}*1944b (SmallGroup(1944,805))
- {12,6}*1944c (SmallGroup(1944,2324))