include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {36,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {36,6}*1296o
if this polytope has a name.
Group : SmallGroup(1296,2978)
Rank : 3
Schlafli Type : {36,6}
Number of vertices, edges, etc : 108, 324, 18
Order of s0s1s2 : 36
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {36,6}*648c
3-fold quotients : {12,6}*432i
6-fold quotients : {12,6}*216c
9-fold quotients : {4,6}*144
18-fold quotients : {4,6}*72
27-fold quotients : {12,2}*48
54-fold quotients : {6,2}*24
81-fold quotients : {4,2}*16
108-fold quotients : {3,2}*12
162-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 9)( 5, 8)( 6, 7)( 10, 11)( 13, 16)( 14, 18)( 15, 17)
( 19, 21)( 22, 26)( 23, 25)( 24, 27)( 28, 55)( 29, 57)( 30, 56)( 31, 63)
( 32, 62)( 33, 61)( 34, 60)( 35, 59)( 36, 58)( 37, 65)( 38, 64)( 39, 66)
( 40, 70)( 41, 72)( 42, 71)( 43, 67)( 44, 69)( 45, 68)( 46, 75)( 47, 74)
( 48, 73)( 49, 80)( 50, 79)( 51, 81)( 52, 77)( 53, 76)( 54, 78)( 83, 84)
( 85, 90)( 86, 89)( 87, 88)( 91, 92)( 94, 97)( 95, 99)( 96, 98)(100,102)
(103,107)(104,106)(105,108)(109,136)(110,138)(111,137)(112,144)(113,143)
(114,142)(115,141)(116,140)(117,139)(118,146)(119,145)(120,147)(121,151)
(122,153)(123,152)(124,148)(125,150)(126,149)(127,156)(128,155)(129,154)
(130,161)(131,160)(132,162)(133,158)(134,157)(135,159);;
s1 := ( 1, 4)( 2, 6)( 3, 5)( 7, 9)( 10, 60)( 11, 59)( 12, 58)( 13, 57)
( 14, 56)( 15, 55)( 16, 62)( 17, 61)( 18, 63)( 19, 32)( 20, 31)( 21, 33)
( 22, 29)( 23, 28)( 24, 30)( 25, 34)( 26, 36)( 27, 35)( 37, 77)( 38, 76)
( 39, 78)( 40, 74)( 41, 73)( 42, 75)( 43, 79)( 44, 81)( 45, 80)( 46, 50)
( 47, 49)( 48, 51)( 53, 54)( 64, 67)( 65, 69)( 66, 68)( 70, 72)( 82, 85)
( 83, 87)( 84, 86)( 88, 90)( 91,141)( 92,140)( 93,139)( 94,138)( 95,137)
( 96,136)( 97,143)( 98,142)( 99,144)(100,113)(101,112)(102,114)(103,110)
(104,109)(105,111)(106,115)(107,117)(108,116)(118,158)(119,157)(120,159)
(121,155)(122,154)(123,156)(124,160)(125,162)(126,161)(127,131)(128,130)
(129,132)(134,135)(145,148)(146,150)(147,149)(151,153);;
s2 := ( 1,101)( 2,102)( 3,100)( 4,104)( 5,105)( 6,103)( 7,107)( 8,108)
( 9,106)( 10, 91)( 11, 92)( 12, 93)( 13, 94)( 14, 95)( 15, 96)( 16, 97)
( 17, 98)( 18, 99)( 19, 84)( 20, 82)( 21, 83)( 22, 87)( 23, 85)( 24, 86)
( 25, 90)( 26, 88)( 27, 89)( 28,155)( 29,156)( 30,154)( 31,158)( 32,159)
( 33,157)( 34,161)( 35,162)( 36,160)( 37,145)( 38,146)( 39,147)( 40,148)
( 41,149)( 42,150)( 43,151)( 44,152)( 45,153)( 46,138)( 47,136)( 48,137)
( 49,141)( 50,139)( 51,140)( 52,144)( 53,142)( 54,143)( 55,128)( 56,129)
( 57,127)( 58,131)( 59,132)( 60,130)( 61,134)( 62,135)( 63,133)( 64,118)
( 65,119)( 66,120)( 67,121)( 68,122)( 69,123)( 70,124)( 71,125)( 72,126)
( 73,111)( 74,109)( 75,110)( 76,114)( 77,112)( 78,113)( 79,117)( 80,115)
( 81,116);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(162)!( 2, 3)( 4, 9)( 5, 8)( 6, 7)( 10, 11)( 13, 16)( 14, 18)
( 15, 17)( 19, 21)( 22, 26)( 23, 25)( 24, 27)( 28, 55)( 29, 57)( 30, 56)
( 31, 63)( 32, 62)( 33, 61)( 34, 60)( 35, 59)( 36, 58)( 37, 65)( 38, 64)
( 39, 66)( 40, 70)( 41, 72)( 42, 71)( 43, 67)( 44, 69)( 45, 68)( 46, 75)
( 47, 74)( 48, 73)( 49, 80)( 50, 79)( 51, 81)( 52, 77)( 53, 76)( 54, 78)
( 83, 84)( 85, 90)( 86, 89)( 87, 88)( 91, 92)( 94, 97)( 95, 99)( 96, 98)
(100,102)(103,107)(104,106)(105,108)(109,136)(110,138)(111,137)(112,144)
(113,143)(114,142)(115,141)(116,140)(117,139)(118,146)(119,145)(120,147)
(121,151)(122,153)(123,152)(124,148)(125,150)(126,149)(127,156)(128,155)
(129,154)(130,161)(131,160)(132,162)(133,158)(134,157)(135,159);
s1 := Sym(162)!( 1, 4)( 2, 6)( 3, 5)( 7, 9)( 10, 60)( 11, 59)( 12, 58)
( 13, 57)( 14, 56)( 15, 55)( 16, 62)( 17, 61)( 18, 63)( 19, 32)( 20, 31)
( 21, 33)( 22, 29)( 23, 28)( 24, 30)( 25, 34)( 26, 36)( 27, 35)( 37, 77)
( 38, 76)( 39, 78)( 40, 74)( 41, 73)( 42, 75)( 43, 79)( 44, 81)( 45, 80)
( 46, 50)( 47, 49)( 48, 51)( 53, 54)( 64, 67)( 65, 69)( 66, 68)( 70, 72)
( 82, 85)( 83, 87)( 84, 86)( 88, 90)( 91,141)( 92,140)( 93,139)( 94,138)
( 95,137)( 96,136)( 97,143)( 98,142)( 99,144)(100,113)(101,112)(102,114)
(103,110)(104,109)(105,111)(106,115)(107,117)(108,116)(118,158)(119,157)
(120,159)(121,155)(122,154)(123,156)(124,160)(125,162)(126,161)(127,131)
(128,130)(129,132)(134,135)(145,148)(146,150)(147,149)(151,153);
s2 := Sym(162)!( 1,101)( 2,102)( 3,100)( 4,104)( 5,105)( 6,103)( 7,107)
( 8,108)( 9,106)( 10, 91)( 11, 92)( 12, 93)( 13, 94)( 14, 95)( 15, 96)
( 16, 97)( 17, 98)( 18, 99)( 19, 84)( 20, 82)( 21, 83)( 22, 87)( 23, 85)
( 24, 86)( 25, 90)( 26, 88)( 27, 89)( 28,155)( 29,156)( 30,154)( 31,158)
( 32,159)( 33,157)( 34,161)( 35,162)( 36,160)( 37,145)( 38,146)( 39,147)
( 40,148)( 41,149)( 42,150)( 43,151)( 44,152)( 45,153)( 46,138)( 47,136)
( 48,137)( 49,141)( 50,139)( 51,140)( 52,144)( 53,142)( 54,143)( 55,128)
( 56,129)( 57,127)( 58,131)( 59,132)( 60,130)( 61,134)( 62,135)( 63,133)
( 64,118)( 65,119)( 66,120)( 67,121)( 68,122)( 69,123)( 70,124)( 71,125)
( 72,126)( 73,111)( 74,109)( 75,110)( 76,114)( 77,112)( 78,113)( 79,117)
( 80,115)( 81,116);
poly := sub<Sym(162)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1 >;
References : None.
to this polytope